1、小结与复习第二十一章 一元二次方程要点梳理考点讲练课堂小结课后作业一、一元二次方程的基本概念1.定义:只含有一个未知数的整式方程,并且都可以化为 ax2bxc0(a,b,c为常数,a0)的形式,这样的方程叫做一元二次方程2.一般形式:ax2 bx c0(a,b,c为常数,a0)要点梳理要点梳理3.项数和系数:ax2 bx c0(a,b,c为常数,a0)一次项:ax2 一次项系数:a二次项:bx 二次项系数:b常数项:c4.注意事项:(1)含有一个未知数;(2)未知数的最高次数为2;(3)二次项系数不为0;(4)整式方程 二、解一元二次方程的方法一元二次方程的解法适用的方程类型直接开平方法配方法
2、公式法因式分解x2+px+q=0(p2-4q 0)(x+m)2n(n 0)ax2+bx+c=0(a0,b2-4ac0)(x+m)(x+n)0各种一元二次方程的解法及使用类型三、一元二次方程在生活中的应用列方程解应用题的一般步骤:审设列解检答(1)审题:通过审题弄清已知量与未知量之间的数量关系(2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法(3)列方程:就是建立已知量与未知量之间的等量关系列方程这一环节最重要,决定着能否顺利解决实际问题(4)解方程:正确求出方程的解并注意检验其合理性(5)作答:即写出答语,遵循问什么答什么的原则写清答语考点一 一元二次方程的定义例1 若关
3、于x的方程(m-1)x2+mx-1=0是一元二次方程,则m的取值范围是()A.m1 B.m=1 C.m1 D.m0解析 本题考查了一元二次方程的定义,即方程中必须保证有二次项(二次项系数不为0),因此它的系数m-10,即m1,故选A.A1.方程5x2-x-3=x2-3+x的二次项系数是 ,一次项系数是 ,常数项是 .4-20考点讲练考点讲练针对训练考点二 一元二次方程的根的应用解析 根据一元二次方程根的定义可知将x=0代入原方程一定会使方程左右两边相等,故只要把x=0代入就可以得到以m为未知数的方程m2-1=0,解得m=1的值.这里应填-1.这种题的解题方法我们称之为“有根必代”.例2 若关于
4、x的一元二次方程(m-1)x2+x+m2-1=0有一个根为0,则m=.【易错提示】求出m值有两个1和-1,由于原方程是一元二次方程,所以1不符合,应引起注意.-1针对训练2.一元二次方程x2+px-2=0的一个根为2,则p的值为 .-1【易错提示】(1)配方法的前提是二次项系数是1;(a-b)2与(a+b)2 要准确区分;(2)求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯解析(1)配方法的关键是配上一次项系数一半的平方;(2)先求出方程x213x+36=0的两根,再根据三角形的三边关系定理,得到符合题意的边,进而求得三角形周长考点三 一元二次方程的解法例3
5、(1)用配方法解方程x2-2x-5=0时,原方程应变为()A.(x-1)2=6 B.(x+2)2=9 C.(x+1)2=6 D.(x-2)2=9(2)(易错题)三角形两边长分别为3和6,第三边的长是方程x213x+36=0的根,则该三角形的周长为()A13 B 15 C18 D13或18AA3.菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.24A针对训练4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).1-4-1.abc,公式:,法22-4=-4-41-1=200.ba
6、c 2-420425.221bbacxa方程有两个不相等的实数根 1225,25.xx4.用公式法和配方法分别解方程:x2-4x-1=0 (要求写出必要解题步骤).241.xx移得配法项:,方2224212.xx配方,得225x 2=5x由 此 可 得,1225,25.xx考点四 一元二次方程的根的判别式的应用例4 已知关于x的一元二次方程x2-3m=4x有两个不相等的实数根,则m的取值范围是()A.B.m2 C.m 0 D.m0,即42-41(-3m)=16+12m0,解得 ,故选A.43m 5.下列所给方程中,没有实数根的是()A.x2+x=0 B.5x2-4x-1=0 C.3x2-4x+
7、1=0 D.4x2-5x+2=06.(开放题)若关于x的一元二次方程x2-x+m=0有两个不相等的实数根,则m的值可能是(写出一个即可)D0针对训练考点五 一元二次方程的根与系数的关系例5 已知一元二次方程x24x30的两根为m,n,则m2mnn2 25解析 根据根与系数的关系可知,m+n=4,mn=-3.m2mnn2m2+n2-mn=(m+n)2-3mn=42-3(-3)=25.故填25.【重要变形】222121212()2;xxxxx x22121212()()4xxxxx x12121211xxxxxx针对训练 7.已知方程2x2+4x-3=0的两根分别为x1和x2,则x12+x22的值
8、等于()A.7 B.-2 C.D.3232A考点六 一元二次方程的应用 例6 某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的销售价为x元,则每天的销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?市场销售问题解析 本题为销售中的利润问题,其基本本数量关系用表析分如下:设公司每天的销售价为x元.单件利润销售量(件)每星期利润(元)正常销售涨价销售432x-2032-2(x-24)150其等量关系是:
9、总利润=单件利润销售量.解:(1)32-(x-24)2=80-2x;(2)由题意可得(x-20)(80-2x)=150.解得 x1=25,x2=35.由题意x28,x=25,即售价应当为25元.【易错提示】销售量在正常销售的基础上进行减少.要注意验根.128例7 菜农小王种植的某种蔬菜,计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该种蔬菜滞销.小王为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.求平均每次下调的百分率是多少?解:设平均每次下调的百分率是x,根据题意得 5(1-x)2=3.2 解得 x1=1.8(舍去),x2=0.2=20%
10、.答:平均每次下调的百分率是20%.平均变化率问题例8 为了响应市委政府提出的建设绿色家园的号召,我市某单位准备将院内一个长为30m,宽为20m的长方形空地,建成一个矩形的花园,要求在花园中修两条纵向平行和一条弯折的小道,剩余的地方种植花草,如图所示,要是种植花草的面积为532m2,,那么小道的宽度应为多少米?(所有小道的进出口的宽度相等,且每段小道为平行四边形)解:设小道进出口的宽为解:设小道进出口的宽为xcm (30-2x)(20-x)=532 x2-35x+34=0 x1=1 x2=34(舍去)(舍去)答:小道进出口的宽度应为答:小道进出口的宽度应为1米米.解决有关面积问题时,除了对所学图形面积公式熟悉外,还要会将不规则图形分割或组合成规则图形,并找出各部分图形面积之间的关系,再列方程求解.(注意:这里的横坚斜小路的的宽度都相等)平移转化方法总结一元二次方程一元二次方程的定义概念:整式方程;一元;二次.一般形式:ax2+bx+c=0(a0)一元二次方程的解法直接开平方法配方法公式法224(40)2bbacxbaca 因式分解法根 的 判 别 式 及根与系数的关系根的判别式:=b2-4ac根与系数的关系1212bxxacxxa一元二次方程 的 应 用营销问题、平均变化率问题几何问题、数字问题课堂小结课堂小结见学练优本章小结与复习课后作业课后作业