1、问题2:你知道长方形和正方形的内角和是多少吗?其他四边形的内角和是多少?问题问题1:你还记得三角形内角和是多少度吗?:你还记得三角形内角和是多少度吗?(三角形内角和 180)(都是360)想一想想一想1.从从n边形的一个顶点可以引条对角线,边形的一个顶点可以引条对角线,将将n边形分成了边形分成了_个三角形个三角形.2.n边形的对角线一共有边形的对角线一共有_ 条条.(n-3)(n-2)(3)2nn 温故知新温故知新ABCD问题3:在探究四边形的内角和时,有的同学不是用量角器度量、计算得到,而是 按照如图所示,利用辅助线将四边形分割成两个三角形的方法,利用三角形内角和等于180,得到四边形内角和
2、等于360。你能说明它的合理性吗?并且启发你能否借助辅助线找到不同的分割方法呢?想一想想一想PABCD图 1如图1,在四边形内任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形,四边形内角和等于1804 360=360PABDC图 2如图2,在四边形的一边上任取一点P,连接PB、PC,将四边形变成有一个公共顶点的三个三角形,四边形内角和等于180 3 180=360PABCD图 3如图3,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形,四边形内角和等于180 3 180=360四边形内角和为四边形内角和为360360BACDE五
3、边形内角和五边形内角和3 3180180540540ABCDEF180 4 180=540E ABCDO180 5 360=540ABCDE4 180180 O=540学一学学一学四边形的内角和 (42)180=360 五边形的内角和 (52)180=540 六边形的内角和 (62)180=720 七边形的内角 (72)180=900 B ACDGFEn n边形内角和边形内角和=(n=(n2)2)1801803456n0n31231234n2(n2)1804 1803 1802 1801 180n边形内角和等于(n2)1802.如果一个多边形的内角和是如果一个多边形的内角和是1440度,那么这
4、是度,那么这是 边形。边形。解:由多边形的内角和公式可得解:由多边形的内角和公式可得(n-2)180=1440 (n-2)=8 n=10这是十边形。这是十边形。十十3.已知一个多边形每个内角都等于 108,求这个多边形的边数?1、(抢答)8边形的内角和等于多少度?十边形呢?解:设这个多边形的边数为n,根据题意得:(n2)180=108n解得:n=5 答:这个多边形是五边形。如果一个四边形的一组对角互补,那么另一组对如果一个四边形的一组对角互补,那么另一组对角有什么关系?角有什么关系?A A B BC CD D解:解:如图,四边形如图,四边形ABCD中,中,A+C=180A+C=180 A+B+
5、C+D=(42)180 =360 因为因为 BD =360(AC)=360 180=180 这就是说:这就是说:如果四边形一组对角互补,那么另一组对如果四边形一组对角互补,那么另一组对角也互补角也互补所以所以 例例1:如果一个角的两边与另一个角的两边分别垂直,那么如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是这两个角的关系是_相等或者互补相等或者互补1.十二边形的内角和是(十二边形的内角和是().2.一个多边形当边数增加一个多边形当边数增加1时,它的内角和增加时,它的内角和增加().3.一个多边形的内角和是一个多边形的内角和是720,则此多边形共有,则此多边形共有()个内角)个
6、内角.4.如果一个多边形的内角和是如果一个多边形的内角和是1440,那么这,那么这是(是()边形)边形.1800180六十十【例例】如图,在五边形的每个顶点处各取一个外角,如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和五边形的外角和这些外角的和叫做五边形的外角和五边形的外角和等于多少?等于多少?6E B CD1 2 3 4 5 A五边形外角和五边形外角和结论:五边形的外角和等于结论:五边形的外角和等于360.(52)180=360 6E BCD1 2 3 4 5 A=5个平角个平角 五边形内角和五边形内角和=5180【例例2】如图,在五边形的每个顶点处各取一个外角,如图
7、,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和五边形的外角和这些外角的和叫做五边形的外角和五边形的外角和等于多少?等于多少?例例2 如图,在六边形的每个顶点处各取如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?角和六边形的外角和等于多少?1 12 23 34 4A A B BC CD DE EF F5 56 6探究探究 在在n边形的每个顶点处各取一个外角,这些外角边形的每个顶点处各取一个外角,这些外角的和叫做的和叫做n边形的外角和边形的外角和n边形外角和边形外角和结论:结论:n边形的外角和等于
8、边形的外角和等于360360.(n2)180=360 A1E BCD 2 3 4 5F n=n个平角个平角-n边形内角和边形内角和=n180 n边形外角和是多少度?每个内角的度数是2180nn每个外角的度数是每个外角的度数是360n(1)若十二边形的每个内角都相等若十二边形的每个内角都相等,那么每个内角那么每个内角是是_度度.(2)已知多边形的每个内角都是已知多边形的每个内角都是135度度,则这个多边则这个多边形是形是_.(3)如果某个多边形的内角和等于它的外角和如果某个多边形的内角和等于它的外角和,那那么这个多边形的边数是么这个多边形的边数是_.150八边形八边形四边形四边形练习练习2 2:
9、已知一个多边形,它的内角和等于外已知一个多边形,它的内角和等于外角和的角和的2 2倍,求这个多边形的边数倍,求这个多边形的边数.解:解:设多边形的边数为设多边形的边数为n.它的内角和等于它的内角和等于(n2)180,多边形外角和等于多边形外角和等于360,(n2)180=2 360.解得解得:n=6.这个多边形的边数为这个多边形的边数为6.今天的收获 1 1、n边形的内角和等于边形的内角和等于(n2 2)180180.3 3、利用类比归纳、转化的学习方法,可以、利用类比归纳、转化的学习方法,可以把多边形问题转化为三角形问题来解决把多边形问题转化为三角形问题来解决;外角外角问题转化为内角来解决问题转化为内角来解决.4 4、方程的数学思想在几何中有重要的作用、方程的数学思想在几何中有重要的作用.本节课你学会哪些知识?学会了哪些解决问题的方法?本节课你学会哪些知识?学会了哪些解决问题的方法?你还有哪些疑问?你还有哪些疑问?2 2、n边形的外角和等于边形的外角和等于360360.