微积分基本概念课件.ppt

上传人(卖家):晟晟文业 文档编号:4673982 上传时间:2022-12-31 格式:PPT 页数:17 大小:428.29KB
下载 相关 举报
微积分基本概念课件.ppt_第1页
第1页 / 共17页
微积分基本概念课件.ppt_第2页
第2页 / 共17页
微积分基本概念课件.ppt_第3页
第3页 / 共17页
微积分基本概念课件.ppt_第4页
第4页 / 共17页
微积分基本概念课件.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、推广推广一元函数微分学一元函数微分学 多元函数微分学多元函数微分学 注意注意:善于类比善于类比,区别异同区别异同多元函数微分法多元函数微分法 及其应用及其应用 第一节第一节一、区域一、区域二、多元函数的概念二、多元函数的概念三、多元函数的极限三、多元函数的极限四、多元函数的连续性四、多元函数的连续性机动 目录 上页 下页 返回 结束 多元函数的基本概念多元函数的基本概念 )(0oPPU00 PP一、一、区域区域1.邻域邻域点集,),(0PPU称为点 P0 的 邻域邻域.例如例如,在平面上,),(),(0yxPU(圆邻域)在空间中,),(),(0zyxPU(球邻域)说明:说明:若不需要强调邻域半

2、径,也可写成.)(0PU点 P0 的去心邻域去心邻域记为0PP)()(2020yyxx)()()(202020zzyyxx机动 目录 上页 下页 返回 结束 在讨论实际问题中也常使用方邻域,平面上的方邻域为 ),(),U(0yxP。0P因为方邻域与圆邻域可以互相包含.,0 xx0 yy机动 目录 上页 下页 返回 结束 2.区域区域(1)内点、外点、边界点设有点集 E 及一点 P:若存在存在点 P 的某邻域 U(P)E,若存在存在点 P 的某邻域 U(P)E=,若对点 P 的任一任一邻域 U(P)既含 E中的内点也含 EE则称 P 为 E 的内点内点;则称 P 为 E 的外点外点;则称 P 为

3、 E 的边界点边界点 .机动 目录 上页 下页 返回 结束 的外点,显然,E 的内点必属于 E,E 的外点必不属于 E,E 的边界点可能属于 E,也可能不属于 E.(2)聚点聚点若对任意任意给定的,点P 的去心机动 目录 上页 下页 返回 结束),(PUE邻域内总有E 中的点,则称 P 是 E 的聚点聚点.聚点可以属于 E,也可以不属于 E(因为聚点可以为 所有聚点所成的点集成为 E 的导集导集.E 的边界点)D(3)开区域及闭区域 若点集 E 的点都是内点,则称 E 为开集;若点集 E E,则称 E 为闭集;若集 D 中任意两点都可用一完全属于 D 的折线相连,开区域连同它的边界一起称为闭区

4、域.则称 D 是连通的;连通的开集称为开区域,简称区域;机动 目录 上页 下页 返回 结束。E 的边界点的全体称为 E 的边界,记作E;例如,例如,在平面上0),(yxyx41),(22yxyx0),(yxyx41),(22yxyx开区域闭区域机动 目录 上页 下页 返回 结束 xyo21xyoxyoxyo21 整个平面 点集 1),(xyx是开集,是最大的开域,也是最大的闭域;但非区域.机动 目录 上页 下页 返回 结束 11oxy 对区域 D,若存在正数 K,使一切点 PD 与某定点 A 的距离 AP K,则称 D 为有界域有界域,界域界域.否则称为无无3.n 维空间维空间n 元有序数组)

5、,(21nxxx),(21nxxx的全体称为 n 维空间维空间,Rnn 维空间中的每一个元素称为空间中的kx数称为该点的第 k 个坐标坐标.记作即机动 目录 上页 下页 返回 结束 RRRRnnkxxxxkn,2,1,R),(21一个点点,当所有坐标时,0kx称该元素为 nR中的零元,记作 O.的距离距离记作2222211)()()(),(nnyxyxyxyx中点 a 的 邻域邻域为),(21nyyyy与点),(,R),(axxxaUn机动 目录 上页 下页 返回 结束),(R21nnxxxx中的点,),(yxyx或规定为),(R21nnxxxx中的点与零元 O 的距离为22221nxxxx.

6、,3,2,1xxn通常记作时当0Raxaxn满足与定元中的变元.ax 记作nR二、多元函数的概念二、多元函数的概念 引例引例:圆柱体的体积 定量理想气体的压强 三角形面积的海伦公式,2hrV,(为常数)RVTRp)2(cbapcba0,0),(hrhr0,0),(TTVTVcbacbacba,0,0,0),()()(cpbpappS机动 目录 上页 下页 返回 结束 hr二:二:二元函数的定义二元函数的定义当当2 n时时,n元元函函数数统统称称为为多多元元函函数数.多元函数中同样有定义域、值域、自变量、多元函数中同样有定义域、值域、自变量、因变量等概念因变量等概念.类似地可定义三元及三元以上函

7、数类似地可定义三元及三元以上函数xzy例如,二元函数221yxz定义域为1),(22 yxyx圆域说明说明:二元函数 z=f(x,y),(x,y)D图形为中心在原点的上半球面.,)sin(,yxz 又如机动 目录 上页 下页 返回 结束 的图形一般为空间曲面 .12R),(yx三元函数)arcsin(222zyxu定义域为1),(222zyxzyx图形为4R空间中的超曲面.单位闭球xyzo例例1 1 求求 的定义域的定义域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定义域为所求定义域为.,42|),(222yxyxyxD 三、多元函数的极限三、多元函数的极限

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(微积分基本概念课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|