1、三角函数读音正弦:sine(简写sin)sain 余弦:cosine(简写cos)kusain 正切:tangent(简写tan)tndnt 余切:cotangent(简写cot)kutndnt 正割:secant(简写sec)si:knt 余割:cosecant(简写csc)kusi:knt 1反三角函数读音反正弦 arc sine /a:k/反余弦 arc cosine 反正切 arc tangent 反余切 arc cotangent 2双曲函数及其性质双曲正弦双曲余弦双曲正切2xxeeshx2xxeechxxxxxshxeethxchxeehyperbolic sinehyperbol
2、ic cosinehyperbolic tangent3双曲正弦函数名双曲正弦符号shx表达式2xxee(,)定义域奇偶性奇函数单调性单调递增极限+lim2xxxee+-lim2xxxee-4双曲正弦函数图像shx5双曲正弦值域(,)导数()2xxee()shx2xxeechx6双曲正弦的反函数2xxeey2yyeexyue12uxu2210uxu 22442xxu0,()yue 舍去2=+1yexx 2ln(1)yxx21xx令(,)x (-+),(-+)xy ,(-+),(-+)xy ,7双曲正弦与反双曲正弦的图像shxarshx8反双曲正弦函数名反双曲正弦符号arshx表达式(,)定义域
3、奇偶性奇函数单调性单调递增2ln(1)yxx9反双曲正弦值域(,)导数2(ln(1)xx()arshx22112(1)211xxxx211x10双曲余弦函数名双曲余弦符号chx表达式2xxee(,)定义域奇偶性偶函数11双曲余弦的单调性221122xxxxeeee因为函数为偶函数,所以只需讨论单调递增0,)(,0单调递减0,)上的情况.设120,xx21211=2xxxxeeee(()()2121111=2xxxxeeee(()()1221121-=2xxxxxxeeeee e(()2112+11=2xxxxeee()(1-)则012双曲余弦函数图像chx13双曲余弦的反函数2xxeey2yy
4、eexyue12uxu2210uxu 22442xxu1,()yue 舍去2=+-1yexx2ln(+-1)yxx21xx令1,)x(0,1)xy(10)xy,14双曲余弦与反双曲余弦的图像a r c h xchxarchx15反双曲余弦函数名反双曲余弦符号1,)表达式2ln(1)yx x 定义域单调性单调递增 0,)奇偶性无16反双曲余弦值域2(ln(1)x x导数()a r c h x2211 2(1)211xx xx211xthx17双曲正切函数名双曲正切符号xxxxeeee表达式21xxxee e(,)定义域奇偶性奇函数18双曲正切单调性单调递增21xxxee e 2211xe+lim
5、xxxxxeeee 极限1-limxxxxxe ee e-1thx19双曲正切函数图像(1,1)20双曲正切值域()thx导数()shxchx2()()s h xc h xs h xc h xc hx222c hxs hxc hx21c hx-xxxxe eye e21双曲正切的反函数1=1uuxuuyue2(1)1x ux(1,1)x 令(-+),(-1 1)xy,(-11),(-+)xy,-yyyyeexee221=1uxu211xux11xux11ln21xx1ln1xyx22双曲正切与反双曲正切的图像a r th xarthx23反双曲正切函数名反双曲正切符号(1,1)表达式11ln2
6、1xyx定义域奇偶性奇函数单调性单调递增11(ln)21xx24反双曲正切值域(,)导数()arthx111()1211xxxx21 1(1)(1)(1)(1)2 1(1)x x x x xxx 21 1(1)(1)2 1(1)xxxxx211x25双曲函数的图像chxxeshxxe262xe双曲函数的图像xe2xexe )(C27导数总结导数总结0 )(x1x)(xaaaxln)(xexe )(logxaaxln1 )(ln xx1 )(sinx28xcos)(cosxxsin)(tanxx2sec)(cot xx2csc)(secxxxtansec)(cscxxxcotcsc(s)h x
7、导数总结导数总结c h x()chxs h x()th x21c hx )(arcsinx29导数总结导数总结211x )(arccosx211x )(arctanx211x )cot(arcx211x(a r)s h x211x(a r)c h x211x(a r)th x211x()s h x y s h x c h y c h x s h y 30双曲函数间的关系()sh xyshxchychxshy()ch xychxchyshxshy()ch xychxchyshxshy221c hxs hx22sh xshxchx222ch xch xsh xsin()sin co s co s sinx yx yx y sin()sincoscos sinxyxyxycos()cos cossin sinxyxyxycos()cos cos+sinsinxyxyxy22c o s+s i n1xxsin22sin cosxxx22cos2cossinxxxNoImage31