1、第三节第三节 上一节我们建立了积分学两类基本问题上一节我们建立了积分学两类基本问题之间的联系之间的联系微积分基本公式,利用这微积分基本公式,利用这个公式计算定积分的关键是求出不定积分个公式计算定积分的关键是求出不定积分,而换元法和分部积分法是求不定积分的,而换元法和分部积分法是求不定积分的两种基本方法,如果能把这两种方法直接两种基本方法,如果能把这两种方法直接应用到定积分的计算,相信定能使得定积应用到定积分的计算,相信定能使得定积分的计算简化,下面我们就来建立定积分分的计算简化,下面我们就来建立定积分的换元积分公式和分部积分公式。的换元积分公式和分部积分公式。定积分的换元法和分部积分法定积分的
2、换元法和分部积分法一、定积分的换元法二、分部积分法三、小结第三节第三节一、定积分的换元法一、定积分的换元法 定理定理1.设函数设函数,)(baCxf单值函数单值函数)(tx满足满足:1),)(1Ct 2)在,上,)(bta;)(,)(batfxxfbadd)()t()t证证:所证等式两边被积函数都连续所证等式两边被积函数都连续,因此积分都存在因此积分都存在,且它们的原函数也存在且它们的原函数也存在.,)()(的一个原函数是设xfxF是的原函数的原函数,因此有因此有则则baxxfd)()()(aFbF)(F)(Ftfd()t()tF()tf()t()t则则说明说明:1)当当 ,即即区间换为区间换
3、为,时,定理定理 1 仍成立仍成立.2)必需注意必需注意换元必换限换元必换限,原函数中的变量不必代回原函数中的变量不必代回.3)换元公式也可反过来使用换元公式也可反过来使用,即即)(tx令xxfbad)(或配元或配元f()td()t配元不换限配元不换限tfd()t()ttfxxfbadd)()t()ttfd()t()t.解解 换元:换元:,;换限:换限:,tsinx tdtdxcos0 x0t1x2ttdttdxxcossin11202102202costdt3.3.例题例题 dxx1021例例1 1 计算计算dtt202cos121 20202212cos21tdtdt2011sin2224
4、tt 注注 第一步是采用的换元(不定积分第二类换第一步是采用的换元(不定积分第二类换元法),元法),换元的同时必须换限换元的同时必须换限。在计算。在计算dtt202cos时,我们采用了凑微分法,没有写出新变量,时,我们采用了凑微分法,没有写出新变量,所以没有换限所以没有换限.41102dxx:由定积分的几何意义知,该积分值等由定积分的几何意义知,该积分值等于由于由 ,直线,直线 所所围图形的面积(见右图)围图形的面积(见右图).21xy1,0,0 xxy41面积值为圆面积的面积值为圆面积的 .21 xy-11xyo例例2 2 计算计算 .dxxx204cos2sin解法解法1.1.dxxx20
5、4cos2sindxxx205cossin2换限:换限:,0 x1t2x0t,换元换元:,xtcosxdxdtsin 原式原式 .dtt015206111263t 解法解法2.2.dxxx204cos2sindxxx205cossin2 5202coscosxdx 260112cos63x 由此可见,定积分也可以象不定积分一由此可见,定积分也可以象不定积分一样进行换元,所不同的是不定积分换元时要样进行换元,所不同的是不定积分换元时要回代原积分变量,而对定积分则只需将其上回代原积分变量,而对定积分则只需将其上、下限换成新变量的上、下限即可计算出定、下限换成新变量的上、下限即可计算出定积分,而不必
6、回代原积分变量积分,而不必回代原积分变量例例4 4 计算计算解解.)ln1(ln43 eexxxdx原式原式 43)ln1(ln)(lneexxxd 43)ln1(ln)(lneexxxd 432)ln(1ln2eexxd 342 arcsin(ln)eex.6 例例5.5.计算计算.d12240 xxx解解:令令21,tx则则,dd,212ttxtx,0时当x,4时x3.t 原式原式=ttttd231212ttd)3(21312)331(213tt 133221;t 且且 例例6.6.,)(aaCxf设证证:(1)若若,)()(xfxfaaaxxfxxf0d)(2d)(则xxfaad)(2)
7、若若,)()(xfxf0d)(aaxxf则xxfad)(0 xxfad)(0ttfad)(0 xxfad)(0 xxfxfad)()(0,d)(20 xxfa时)()(xfxf时)()(xfxf,0偶倍奇零偶倍奇零tx令奇函数奇函数例例7 7 计算计算解解.11cos21122 dxxxxx原式原式 1122112dxxx 11211cosdxxxx偶函数偶函数 1022114dxxx 10222)1(1)11(4dxxxx 102)11(4dxx 102144dxx.4 单位圆的面积单位圆的面积 证明证明 例例8 8 若若f(x)在在0,1上连续上连续,证明证明 (2)00)(sin2)(s
8、indxxfdxxxf (1)2020)(cos)(sindxxfdxxf 证明(1)令tx2,则 dttfdxxf)2sin()(sin02202020)(cos)2sin(dxxfdttfdttfdxxf)2sin()(sin0220 2020)(cos)2sin(dxxfdttf(2)令令x t 因为因为 例8 若若f(x)在在0,1上连续上连续,证明证明 证明 (2)00)(sin2)(sindxxfdxxxf (1)2020)(cos)(sindxxfdxxf 00)sin()()(sindttftdxxxf00)(sin)()sin()(dttftdttft00)(sin)(sin
9、dtttfdttf00)(sin)(sindxxxfdxxf所以 00)(sin2)(sindxxfdxxxf 00)sin()()(sindttftdxxxf00)(sin)()sin()(dttftdttft例例9 9 计算计算 .dxxxx02cos1sin解解 积分区间为积分区间为 ,被积函数为,被积函数为 型,利用定积分公式得型,利用定积分公式得,0 xxf sindxxxdxxxx0202cos1sin2cos1sinxdxcoscos112024cosarctan220 x例例1111 设设 求求 ,0,0,11xexxxfxdxxf201解解 dttfxtdxxf112011
10、dxxfdxxf1001dxxdxex100111 10011lnxex2ln11e2 2解解 ,01,01,11111xexxxfx1,1,11xexxxdxxfdxxfdxxf211020111dxxdxex211011dxxxdex21101112ln11ln21101exex定积分的分部积分公式定积分的分部积分公式推导推导 ,vuvuuv (),bbaauv dxuv ,bbbaaauvu vdxuv dx .bbbaaaudvuvvdu 二、分部积分公式二、分部积分公式例例1 1 计算计算.arcsin210 xdx解解令令,arcsin xu ,dxdv ,12xdxdu ,xv
11、210arcsin xdx 210arcsin xx 21021xxdx621 )1(112120221xdx 12 12201x.12312 则则 解解 例例2 2 计算计算 .exdxx1lneexdxxdxx121ln21lneedxxxxx0212121ln21)1(4141212122exee例例3 3 计算计算 .dxx402sin解解 dttttxtxtdtdxxt202sin22,4;0,02,dxx402sintd tcos220dtttt2020cos2cos22sin220t例例4 4 计算计算解解.)2()1ln(102 dxxx 102)2()1ln(dxxx 102
12、1)1ln(xdx102)1ln(xx 10)1ln(21xdx32ln dxxx 1011211112xx 10)2ln()1ln(32lnxx .3ln2ln35 例例5 5 设设 ,求,求 .dtttxfx21sin dxxxf10解解 xxxxxxf222sin22sin 221010 xdxfdxxxf xdfxxfx10210222 dxxfxf102221dxxxx2102sin22dxxx102sin11cos21cos21sin211022102xdxx例例6 6 证明定积分公式证明定积分公式 2200cossinxdxxdxInnn nnnnnnnnnn,3254231,2
13、2143231 为正偶数为正偶数为大于为大于1的正奇数的正奇数证证 设设,sin1xun ,sin xdxdv ,cossin)1(2xdxxndun ,cosxv dxxxnxxInnn 2202201cossin)1(cossin21sin x 0dxxndxxnInnn 22002sin)1(sin)1(nnInIn)1()1(2 21 nnInnI积分积分 关于下标的递推公式关于下标的递推公式nI4223 nnInnI,直到下标减到直到下标减到0或或1为止为止,214365223221202ImmmmIm ,3254761222122112ImmmmIm ),2,1(m,2200 dx
14、I,1sin201 xdxI,221436522322122 mmmmIm.325476122212212 mmmmIm于是于是几个特殊积分、定积分的几个等式几个特殊积分、定积分的几个等式定积分的换元法定积分的换元法dxxfba)(dtttf )()(三、小结定积分的分部积分公式定积分的分部积分公式 .bababavduuvudv(注意与不定积分分部积分法的区别)(注意与不定积分分部积分法的区别)思考题思考题1指指出出求求 2221xxdx的的解解法法中中的的错错误误,并并写写出出正正确确的的解解法法.解解 令令,sectx ,4332:t,sectantdttdx 2221xxdxtdttt
15、ttansectansec14332 dt 4332.12 思考题思考题1解答解答计算中第二步是错误的计算中第二步是错误的.txsec,43,32 t,0tan t.tantan12ttx 正确解法是正确解法是 2221xxdxtxsec tdtttttansectansec14332 dt 4332.12 思考题思考题2设设)(xf 在在 1,0上连续,且上连续,且1)0(f,3)2(f,5)2(f,求,求 10)2(dxxfx.思考题思考题2解答解答 10)2(dxxfx 10)2(21xfxd 1010)2(21)2(21dxxfxfx 10)2(41)2(21xff )0()2(412
16、5ff .2 一、一、填空题:填空题:1 1、3)3sin(dxx_;2 2、03)sin1(d_;3 3、2022dxx_ _;4 4、2121221)(arcsindxxx_;5、55242312sindxxxxx_.练练 习习 题题 1二、二、计算下列定积分:计算下列定积分:1 1、203cossin d;2 2、31221xxdx;3 3、14311xdx;4 4、223coscosdxxx;5 5、02cos1dxx;6 6、224cos4 dx;7 7、112322)11(dxxxxx;8 8、203,maxdxxx;9 9、20dxxx (为参数为参数).三、三、设设 时,时,当
17、当时,时,当当0,110,11)(xexxxfx求求 20)1(dxxf.四、设四、设 baxf,)(在在上连续,上连续,证明证明 babadxxbafdxxf)()(.五、五、证明:证明:1010)1()1(dxxxdxxxmnnm.六、六、证明证明:aaadxxfxfdxxf0)()()(,并求并求 44sin1xdx.七、设七、设 1,0)(在在xf上连续,上连续,证明证明 2020)cos(41)cos(dxxfdxxf.练习题练习题1答案答案一、一、1 1、0 0;2 2、34 ;3 3、2;4 4、323;5 5、0 0.二、二、1 1、41;2 2、3322 ;3 3、2ln21
18、;4 4、34;5 5、22;6 6、23;7 7、4;8 8、8;9 9、417;10 10、时时当当0 ,238;当当20 时时,32383 ;当当2 时时,238 .三、三、)1ln(11 e.六、六、2 2.一、一、填空题:填空题:1 1、设、设 n n 为正奇数,则为正奇数,则 20sin xdxn_;2 2、设、设 n n 为正偶数,则为正偶数,则 20cos xdxn=_;3 3、dxxex10_;4 4、exdxx1ln_;5、10arctan xdxx_.二、二、计算下列定积分:计算下列定积分:1 1、edxx1)sin(ln;2 2、eedxx1ln;练练 习习 题题 23
19、 3、0sin)(xdxxmJm,(,(m为自然数)为自然数)4 4、01)1cos(sinxdxnxn.三三、已已知知xxf2tan)(,求求 40)()(dxxfxf.四四、若若 ,0)(在在xf 连连续续,,1)(,2)0(ff证证明明:3sin)()(0 xdxxfxf.一、一、1 1、!)!1(nn;2 2、2!)!1(nn;3 3、e21;4 4、)1(412 e;5 5、23ln21)9341(.二、二、1 1、211cos1sin ee;2 2、)11(2e;练习题练习题2答案答案 3 3、为奇数为奇数为偶数为偶数1,531)1(642,2642)1(531)(2mmmmmmmJ;4 4、为正偶数时为正偶数时当当为正奇数时为正奇数时当当nnnn,!)!1(2,0;5 5、0.0.三、三、8.8.