1、传热学第六章凝结与沸腾换传热学第六章凝结与沸腾换热热6-1 6-1 凝结换热凝结换热凝结换热的凝结换热的关键点关键点凝结可能以不同的形式发生,膜状凝结和珠状凝结凝结可能以不同的形式发生,膜状凝结和珠状凝结冷凝物相当于增加了热量进一步传递的热阻冷凝物相当于增加了热量进一步传递的热阻层流和湍流膜状凝结换热的实验关联式层流和湍流膜状凝结换热的实验关联式影响膜状凝结换热的因素影响膜状凝结换热的因素会分析竖壁和横管的换热过程,及会分析竖壁和横管的换热过程,及NusseltNusselt膜状凝结理论膜状凝结理论凝结换热实例凝结换热实例 锅炉中的水冷壁锅炉中的水冷壁 寒冷冬天窗户上的冰花寒冷冬天窗户上的冰花
2、 许多其他的工业应用过程许多其他的工业应用过程第六章 凝结与沸腾换热凝结换热中的重要参数凝结换热中的重要参数 蒸汽的饱和温度与壁面温度之差(蒸汽的饱和温度与壁面温度之差(t ts s-t-tw w)汽化潜热汽化潜热 r r 特征尺度特征尺度 其他标准的热物理性质,如动力粘度、导热系其他标准的热物理性质,如动力粘度、导热系 数、比热容等数、比热容等第六章 凝结与沸腾换热1 凝结过程凝结过程 膜状凝结膜状凝结沿整个壁面形成一层薄膜,并且在重力沿整个壁面形成一层薄膜,并且在重力的作用下流动,凝结放出的汽化潜热必的作用下流动,凝结放出的汽化潜热必须通过液膜,因此,液膜厚度直接影响须通过液膜,因此,液膜
3、厚度直接影响了热量传递。了热量传递。珠状凝结珠状凝结当凝结液体不能很好的浸润壁面时,则在壁面当凝结液体不能很好的浸润壁面时,则在壁面上形成许多小液珠,此时壁面的部分表面与蒸上形成许多小液珠,此时壁面的部分表面与蒸汽直接接触,因此,换热速率远大于膜状凝结汽直接接触,因此,换热速率远大于膜状凝结(可能大几倍,甚至一个数量级)(可能大几倍,甚至一个数量级)gg第六章 凝结与沸腾换热虽然珠状凝结换热远大于膜状凝结,但可惜的是,珠状凝虽然珠状凝结换热远大于膜状凝结,但可惜的是,珠状凝结很难保持,因此,大多数工程中遇到的凝结换热大多属结很难保持,因此,大多数工程中遇到的凝结换热大多属于膜状凝结,因此,教材
4、中只简单介绍了膜状凝结于膜状凝结,因此,教材中只简单介绍了膜状凝结2 2 纯净饱和蒸汽层流膜状凝结换热的分析纯净饱和蒸汽层流膜状凝结换热的分析1916年,年,Nusselt提出的简单膜状凝结换热分析是近代膜提出的简单膜状凝结换热分析是近代膜状凝结理论和传热分析的基础。自状凝结理论和传热分析的基础。自1916年以来,各种修正年以来,各种修正或发展都是针对或发展都是针对Nusselt分析的限制性假设而进行了,并形分析的限制性假设而进行了,并形成了各种实用的计算方法。所以,我们首先得了解成了各种实用的计算方法。所以,我们首先得了解Nusselt对纯净饱和蒸汽膜状凝结换热的分析。对纯净饱和蒸汽膜状凝结
5、换热的分析。假定假定:1)常物性;)常物性;2)蒸气静止;)蒸气静止;3)液膜的惯性力忽略;)液膜的惯性力忽略;4)气液界面上无温差,即液膜温度等于饱和温度;)气液界面上无温差,即液膜温度等于饱和温度;5)膜)膜内温度线性分布,即热量转移只有导热;内温度线性分布,即热量转移只有导热;6)液膜的过冷度)液膜的过冷度忽略;忽略;7)忽略蒸汽密度;)忽略蒸汽密度;8)液膜表面平整无波动)液膜表面平整无波动第六章 凝结与沸腾换热gt(y)u(y)Thermal boundary layersVelocity boundary layers微元控制体边界层微分方程组:边界层微分方程组:对应于对应于p.1
6、41页页(5-14),(5-15),(5-16)下脚标下脚标 l 表示液表示液相相x第六章 凝结与沸腾换热考虑(考虑(3)液膜的惯性力忽略)液膜的惯性力忽略 考虑(考虑(5 5)膜内温度线性分布,即热量转移只有导热膜内温度线性分布,即热量转移只有导热 考虑(考虑(7 7)忽)忽略蒸汽密度略蒸汽密度只有只有u u 和和 t t 两个未知量,于两个未知量,于是,上面得方程组化简为:是,上面得方程组化简为:第六章 凝结与沸腾换热边界条件:边界条件:求解上面方程可得:求解上面方程可得:(1)(1)液膜厚度液膜厚度定性温度:定性温度:注意:注意:r r 按按 t ts s 确定确定第六章 凝结与沸腾换热
7、(2)(2)局部对流换热系局部对流换热系数数整个竖壁的平均表面传热系数整个竖壁的平均表面传热系数(3)(3)修正:修正:实验表明,由于液膜表面波动,凝结换热得到强实验表明,由于液膜表面波动,凝结换热得到强 化,因此,实验值比上述得理论值高化,因此,实验值比上述得理论值高2020左右左右修正后:修正后:定性温度:定性温度:注意:注意:r 按按 ts 确定确定第六章 凝结与沸腾换热时,惯性力项和液膜过冷度时,惯性力项和液膜过冷度的影响均可忽略。的影响均可忽略。对于对于倾斜壁倾斜壁,则用,则用 gsingsin 代替以上各式中的代替以上各式中的 g g 即可即可另外,除了对波动的修正外,其他假设也有
8、人做了相关另外,除了对波动的修正外,其他假设也有人做了相关的的研究,如当研究,如当 并且,并且,(4)(4)水平圆管水平圆管努塞尔的理论分析可推广到水平圆管及球表面上的层流努塞尔的理论分析可推广到水平圆管及球表面上的层流膜状凝结膜状凝结式中:下标式中:下标“H”H”表示水平管,表示水平管,“S”“S”表示球表示球;d;d 为水为水 平管或球的直径。平管或球的直径。定性温度与前面的公式相同定性温度与前面的公式相同第六章 凝结与沸腾换热横管与竖管的对流换热系数之比:横管与竖管的对流换热系数之比:3 3 边界层内的流态边界层内的流态无波动层流无波动层流有波动层流有波动层流湍流湍流凝结液体流动也分层流
9、和湍流,并凝结液体流动也分层流和湍流,并且其判断依据仍然时且其判断依据仍然时ReRe,式中:式中:u ul l 为为 x=lx=l 处液膜层的平均流速;处液膜层的平均流速;de de 为该截面处液膜层的当量直径。为该截面处液膜层的当量直径。第六章 凝结与沸腾换热如图如图由热平衡由热平衡所以所以对水平管,用对水平管,用 代替上式中的代替上式中的 即可。即可。并且横管一般都处于层流状态并且横管一般都处于层流状态第六章 凝结与沸腾换热4 4 湍流膜状凝结换热湍流膜状凝结换热液膜从层流转变为湍流的临界雷诺数可定为液膜从层流转变为湍流的临界雷诺数可定为1600。横管因。横管因直径较小,实践上均在层流范围
10、。直径较小,实践上均在层流范围。对湍流液膜,除了靠近壁面的层流底层仍依靠导热来传递对湍流液膜,除了靠近壁面的层流底层仍依靠导热来传递热量外,层流底层之外以湍流传递为主,换热大为增强热量外,层流底层之外以湍流传递为主,换热大为增强对对竖壁的湍流凝结换热竖壁的湍流凝结换热,其沿整个壁面的,其沿整个壁面的平均表面传平均表面传热系数热系数计算式为:计算式为:式中:式中:hl 为层流段的传热系数;为层流段的传热系数;ht 为湍流段的传热系数;为湍流段的传热系数;xc 为层流转变为湍流时转折点的高度为层流转变为湍流时转折点的高度 l 为竖壁的总高度为竖壁的总高度第六章 凝结与沸腾换热利用上面思想,整理的实
11、验关联式:利用上面思想,整理的实验关联式:式中:式中:。除。除 用壁温用壁温 计算外,其余物理量的定性温度均为计算外,其余物理量的定性温度均为第六章 凝结与沸腾换热6-3 6-3 影响膜状凝结的因素影响膜状凝结的因素 工程实际中所发生的膜状凝结过程往往比较复杂,受各种工程实际中所发生的膜状凝结过程往往比较复杂,受各种因素的影响。因素的影响。1.1.不凝结气体不凝结气体 不凝结气体增加了传递过程的阻力,同时使饱和温度下不凝结气体增加了传递过程的阻力,同时使饱和温度下 降,减小了凝结的驱动力降,减小了凝结的驱动力2.2.蒸气流速蒸气流速 流速较高时,蒸气流对液膜表面产生模型的粘滞应力。流速较高时,
12、蒸气流对液膜表面产生模型的粘滞应力。如果蒸气流动与液膜向下的流动同向时,使液膜拉薄,如果蒸气流动与液膜向下的流动同向时,使液膜拉薄,增大;反之使增大;反之使 减小。减小。第六章 凝结与沸腾换热 4.4.液膜过冷度及温度分布的非线性液膜过冷度及温度分布的非线性 如果考虑过冷度及温度分布的实际情况,要用下式代替如果考虑过冷度及温度分布的实际情况,要用下式代替 计算公式中的计算公式中的 ,5.5.管子排数管子排数 管束的几何布置、流体物性都会影响凝结换热。管束的几何布置、流体物性都会影响凝结换热。前面推导的横管凝结换热的公式只适用于单根横管。前面推导的横管凝结换热的公式只适用于单根横管。3.3.过热
13、蒸气过热蒸气 要考虑过热蒸气与饱和液的焓差。要考虑过热蒸气与饱和液的焓差。第六章 凝结与沸腾换热 6.6.管内冷凝管内冷凝 此时换热与蒸气的流速关系很大。此时换热与蒸气的流速关系很大。蒸气流速低蒸气流速低时,凝结液主要在管子底部,蒸气则位于时,凝结液主要在管子底部,蒸气则位于 管子上半部。管子上半部。流速较高流速较高时,形成环状流动,凝结液均匀分布在管子时,形成环状流动,凝结液均匀分布在管子 四周,中心为蒸气核。四周,中心为蒸气核。第六章 凝结与沸腾换热 7.凝结表面的几何形状凝结表面的几何形状v强化凝结换热的原则是强化凝结换热的原则是尽量减薄粘滞在换热表尽量减薄粘滞在换热表面上的液膜的厚度。
14、面上的液膜的厚度。v可用各种带有尖峰可用各种带有尖峰 的表面使在其上冷的表面使在其上冷 凝的液膜拉薄,或凝的液膜拉薄,或 者使已凝结的液体者使已凝结的液体 尽快从换热表面上尽快从换热表面上 排泄掉。排泄掉。第六章 凝结与沸腾换热6-4 沸腾换热现象沸腾换热现象 蒸汽锅炉蒸汽锅炉 做饭做饭 许多其它的工业过程许多其它的工业过程1 生活中的例子生活中的例子2定义定义:a 沸腾:沸腾:工质内部形成大量气泡并由液态转换到气态工质内部形成大量气泡并由液态转换到气态的一种剧烈的汽化过程的一种剧烈的汽化过程 b 沸腾换热:沸腾换热:指工质通过气泡运动带走热量,并使其指工质通过气泡运动带走热量,并使其冷却的一
15、种传热方式冷却的一种传热方式3 分类分类沸腾的分类很多,书中仅介绍了常见沸腾的分类很多,书中仅介绍了常见的的大容器沸腾大容器沸腾(池内沸腾池内沸腾)和和强制对流沸腾强制对流沸腾,每每种又分为种又分为过冷沸腾过冷沸腾和和饱和沸腾饱和沸腾。第六章 凝结与沸腾换热a 大容器沸腾大容器沸腾(池内沸腾池内沸腾):加热壁面沉浸在具有自加热壁面沉浸在具有自由表面的液体中所发生的沸腾;由表面的液体中所发生的沸腾;b 强制对流沸腾:强制对流沸腾强制对流沸腾:强制对流沸腾加热表面加热表面Heated SurfaceLiquidflowBubble flowSlug flowAnnular flowMist flo
16、w第六章 凝结与沸腾换热4 汽泡动力学简介汽泡动力学简介 (1)汽泡的成长过程汽泡的成长过程 实验表明,通常情况下,沸腾时汽泡只发生在加热实验表明,通常情况下,沸腾时汽泡只发生在加热面的某些点,而不是整个加热面上,这些产生气泡的点被面的某些点,而不是整个加热面上,这些产生气泡的点被称为称为汽化核心汽化核心,较普遍的看法认为,壁面上的凹穴和裂缝,较普遍的看法认为,壁面上的凹穴和裂缝易残留气体,是最好的汽化核心,如图所示。易残留气体,是最好的汽化核心,如图所示。c 过冷沸腾:过冷沸腾:指液体主流尚未达到饱和温度,即处于过冷状指液体主流尚未达到饱和温度,即处于过冷状态,而壁面上开始产生气泡,称之为过
17、冷沸腾态,而壁面上开始产生气泡,称之为过冷沸腾d 饱和沸腾:饱和沸腾:液体主体温度达到饱和温度,而壁面温度高于液体主体温度达到饱和温度,而壁面温度高于饱和温度所发生的沸腾,称之为饱和沸腾饱和温度所发生的沸腾,称之为饱和沸腾我们这本书仅介绍我们这本书仅介绍大容器大容器的的饱和沸腾饱和沸腾第六章 凝结与沸腾换热(2)汽泡的存在条件汽泡的存在条件 汽泡半径汽泡半径R必须满足下列条件才能存活必须满足下列条件才能存活(克拉贝龙方程克拉贝龙方程)式中:式中:表面张力,表面张力,N/m;r 汽化潜热,汽化潜热,J/kg v 蒸汽密度,蒸汽密度,kg/m3;tw 壁面温度,壁面温度,C ts 对应压力下的饱和
18、温度,对应压力下的饱和温度,C可见,可见,(tw ts),Rmin 同一加热面上,称为汽化核同一加热面上,称为汽化核心的凹穴数量增加心的凹穴数量增加 汽化核心数增加汽化核心数增加 换热增强换热增强第六章 凝结与沸腾换热5 大容器饱和沸腾曲线:大容器饱和沸腾曲线:表征了大容器饱和沸腾的全部过程,表征了大容器饱和沸腾的全部过程,共包括共包括4个换热规律不同的阶段:个换热规律不同的阶段:自然对流、核态沸腾、过渡沸自然对流、核态沸腾、过渡沸腾腾和和稳定膜态沸腾稳定膜态沸腾,如图所示:,如图所示:qmaxqmin第六章 凝结与沸腾换热几点说明:几点说明:(1)上述热流密度的峰值)上述热流密度的峰值qma
19、x 有重大意义,称为临有重大意义,称为临界热流密度,亦称烧毁点。一般用核态沸腾转折点界热流密度,亦称烧毁点。一般用核态沸腾转折点DNB作为监视接近作为监视接近qmax的警戒。这一点对热流密度可的警戒。这一点对热流密度可控和温度可控的两种情况都非常重要。控和温度可控的两种情况都非常重要。(2)对稳定膜态沸腾,因为热量必须穿过的是热阻较)对稳定膜态沸腾,因为热量必须穿过的是热阻较大的汽膜,所以换热系数比凝结小得多。大的汽膜,所以换热系数比凝结小得多。第六章 凝结与沸腾换热6-5 沸腾换热计算式沸腾换热计算式沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍沸腾换热也是对流换热的一种,因此,牛顿冷却公
20、式仍然适用,即然适用,即但对于沸腾换热的但对于沸腾换热的h h却又许多不同的计算公式却又许多不同的计算公式1 大容器饱和核态沸腾大容器饱和核态沸腾 影响核态沸腾的因素主要是过热度和汽化核心数,而影响核态沸腾的因素主要是过热度和汽化核心数,而汽化核心数受表面材料、表面状况、压力等因素的支配,汽化核心数受表面材料、表面状况、压力等因素的支配,所以沸腾换热的情况液比较复杂,导致了个计算公式分歧所以沸腾换热的情况液比较复杂,导致了个计算公式分歧较大。目前存在两种计算是,一种是针对某一种液体,另较大。目前存在两种计算是,一种是针对某一种液体,另一种是广泛适用于各种液体的。一种是广泛适用于各种液体的。第六
21、章 凝结与沸腾换热为此,书中分别推荐了两个计算式为此,书中分别推荐了两个计算式(1 1)对于水的大容器饱和核态沸腾,教材推荐适用米海)对于水的大容器饱和核态沸腾,教材推荐适用米海 耶夫公式,压力范围:耶夫公式,压力范围:10105 54 4 10106 6 Pa Pa按按 第六章 凝结与沸腾换热(2)罗森诺公式)罗森诺公式广泛适用的强制对流换热公式广泛适用的强制对流换热公式既然沸腾换热也属于对流换热,那么,既然沸腾换热也属于对流换热,那么,st=f(Re,Pr)也应该适用。罗森诺正是在这种思路下,通过大量实验也应该适用。罗森诺正是在这种思路下,通过大量实验得出了如下实验关联式:得出了如下实验关
22、联式:式中,式中,r 汽化潜热;汽化潜热;Cpl 饱和液体的比定压热容饱和液体的比定压热容 g 重力加速度重力加速度 l 饱和液体的动力粘度饱和液体的动力粘度 Cwl 取决于加热表面液体取决于加热表面液体 组合情况的经验常数组合情况的经验常数(表表6)q 沸腾传热的热流密度沸腾传热的热流密度 s 经验指数,水经验指数,水s=1,否则,否则,s=1.7第六章 凝结与沸腾换热上式可以改写为:上式可以改写为:可见,可见,因此,尽管有时上述计算公式得到的,因此,尽管有时上述计算公式得到的q与实验值的偏差高达与实验值的偏差高达 100,但已知,但已知q计算计算 时,则时,则可以将偏差缩小到可以将偏差缩小
23、到 33。这一点在辐射换热种更为明显。这一点在辐射换热种更为明显。计算时必须谨慎处理热流密度。计算时必须谨慎处理热流密度。2 大容器沸腾的临界热流密度大容器沸腾的临界热流密度书中推荐适用如下经验公式:书中推荐适用如下经验公式:第六章 凝结与沸腾换热3 大容器膜态沸腾的关联式大容器膜态沸腾的关联式(1)横管的膜态沸腾)横管的膜态沸腾式中,除了式中,除了r 和和 l 的值由饱和温度的值由饱和温度 ts 决定外,其余物性决定外,其余物性均以平均温度均以平均温度 tm(twts)/2 为定性温度,特征长度为为定性温度,特征长度为管子外径管子外径d,如果加热表面为球面,则上式中的系数如果加热表面为球面,
24、则上式中的系数0.62改为改为0.67第六章 凝结与沸腾换热勃洛姆来建议采用如下超越方程来计算:勃洛姆来建议采用如下超越方程来计算:其中:其中:(2)考虑热辐射作用)考虑热辐射作用由于膜态换热时,壁面温度一般较高,因此,有必要考虑由于膜态换热时,壁面温度一般较高,因此,有必要考虑热辐射换热的影响,它的影响有两部分,一是直接增加了热辐射换热的影响,它的影响有两部分,一是直接增加了换热量,另一个是增大了汽膜厚度,从而减少了换热量。换热量,另一个是增大了汽膜厚度,从而减少了换热量。因此,必须综合考虑热辐射效应。因此,必须综合考虑热辐射效应。第六章 凝结与沸腾换热6-6 6-6 影响沸腾换热的因素影响
25、沸腾换热的因素沸腾换热是我们学过的换热现象中最复杂的,影响因素也沸腾换热是我们学过的换热现象中最复杂的,影响因素也最多,由于我们只学习了大容器沸腾换热,因此,影响因最多,由于我们只学习了大容器沸腾换热,因此,影响因素也只针对大容器沸腾换热。素也只针对大容器沸腾换热。1 不凝结气体不凝结气体 对膜状凝结换热的影响?对膜状凝结换热的影响?与膜状凝结换热不同,液体中的不凝结气体会使沸腾换与膜状凝结换热不同,液体中的不凝结气体会使沸腾换热得到某种程度的强化热得到某种程度的强化2 2 过冷度过冷度 只影响过冷沸腾,不影响饱和沸腾,因自然对流换热时,只影响过冷沸腾,不影响饱和沸腾,因自然对流换热时,因此,
26、过冷会强化换热。,因此,过冷会强化换热。见见p.183第六章 凝结与沸腾换热 3 液位高度液位高度 当传热表面上的液位足当传热表面上的液位足够高时,沸腾换热表面传够高时,沸腾换热表面传热系数与液位高度无关。热系数与液位高度无关。但当液位降低到一定值时,但当液位降低到一定值时,表面传热系数会明显地随表面传热系数会明显地随液液 位的降低而升高位的降低而升高(临界临界液位液位)。图中介质为一个图中介质为一个 大气压下的水大气压下的水4 重力加速度重力加速度 随着航空航天技术的发展,随着航空航天技术的发展,超重力和微重力条件下的超重力和微重力条件下的 传热规律得到蓬勃发展,传热规律得到蓬勃发展,但目前
27、还远没到成熟的地但目前还远没到成熟的地 步,就现有的成果表明:步,就现有的成果表明:第六章 凝结与沸腾换热 从从0.1 100 9.8 m/s2 的范围内,的范围内,g对核态沸腾换热规律对核态沸腾换热规律没有影响,但对自然对流换热有影响,由于没有影响,但对自然对流换热有影响,由于 因此,因此,g Nu 换热加强。换热加强。5 沸腾表面的结构沸腾表面的结构 沸腾表面上的微笑凹坑最容易产生汽化核心,因此,凹沸腾表面上的微笑凹坑最容易产生汽化核心,因此,凹坑多,汽化核心多,换热就会得到强化。近几十年来的强坑多,汽化核心多,换热就会得到强化。近几十年来的强化沸腾换热的研究主要是增加表面凹坑。目前有两种
28、常用化沸腾换热的研究主要是增加表面凹坑。目前有两种常用的手段:的手段:(1)用烧结、钎焊、火焰喷涂、电离沉积等物理用烧结、钎焊、火焰喷涂、电离沉积等物理与化学手段在换热表面上形成多孔结构。与化学手段在换热表面上形成多孔结构。(2)机械加工方机械加工方法。法。第六章 凝结与沸腾换热第六章 凝结与沸腾换热思考题:思考题:1.1.膜状凝结和珠状凝结的概念膜状凝结和珠状凝结的概念.2.2.纯净饱和蒸汽层流膜状凝结换热分析解的基本推导方纯净饱和蒸汽层流膜状凝结换热分析解的基本推导方法法.在这个推导方法中在这个推导方法中 最基本的假设是什么最基本的假设是什么?4.4.对于单根管子对于单根管子,有那些因素影响层流膜状凝结换热有那些因素影响层流膜状凝结换热?它们它们 起什么作用起什么作用?5.5.对于实际凝结换热器对于实际凝结换热器,有那些方法可以提高膜状凝结有那些方法可以提高膜状凝结换热换热 系数系数?6.6.池内饱和沸腾曲线可以分成几个区域池内饱和沸腾曲线可以分成几个区域?有那些特性点有那些特性点?各各 个区域在换热原理上有何特点个区域在换热原理上有何特点?7.7.气化核心的概念气化核心的概念.沸腾气泡产生的物理条件沸腾气泡产生的物理条件.8.8.画出水的池内饱和沸腾曲线画出水的池内饱和沸腾曲线.掌握特性点的基本数值掌握特性点的基本数值范围范围.第六章 凝结与沸腾换热