1、基础知识知识点一知识点一 弧长与扇形的面积弧长与扇形的面积知识点二知识点二 圆锥的侧面积圆锥的侧面积知识点三知识点三 阴影部分的面积阴影部分的面积若设若设O O半径为半径为R R,n n的圆心角所对的弧长的圆心角所对的弧长为为 ,则,则 l若设若设O O半径为半径为R R,n n的圆心角所对的弧长的圆心角所对的弧长为为 ,则,则 l180RnlOnABR知识点一知识点一 弧长与扇形的面积弧长与扇形的面积那么:那么:在半径为在半径为R R 的圆中的圆中,n n的圆心角的圆心角所对的扇形面积的计算公式为所对的扇形面积的计算公式为2=360n RS扇形问题:问题:扇形的弧长公式与面积公式有联系吗?扇
2、形的弧长公式与面积公式有联系吗?问题:问题:扇形的弧长扇形的弧长公式公式与面积公式有联系吗?与面积公式有联系吗?S=l lR 21知识点二知识点二 圆锥的侧面积圆锥的侧面积222lrh已知一弧长为已知一弧长为12cm,此弧所对的圆心,此弧所对的圆心角为角为240,则此弧所在圆的半径为,则此弧所在圆的半径为.(1)弧长公式l=r=12,解得:r=9,故答案为:9cm180240已知扇形的圆心角为已知扇形的圆心角为120,弧长为,弧长为20,扇形的面积为,扇形的面积为.(2)根据弧长公式得,R=20,解得:R=30,故S扇形=lR=2030=3001801202121一个弧长与面积都是一个弧长与面
3、积都是 的扇形,它的半的扇形,它的半径为径为.(3)S扇形=lR得 =R 解得:R=2,2121 圆锥的母线为l,底面半径为r,如何求侧面展开图扇形的圆心角的度数?设侧面展开图扇形的圆心角的度数是nSOrln扇形弧长=圆锥底面周长2rrln2180360nlr2334n 填空填空:根据下列条件求值根据下列条件求值 .(1)(1)l=2=2,r=1,r=1,则则n n=_ (2)n=(2)n=60,r=r=3 则则l=_ 18SOrl180知识点三知识点三 阴影部分的面积阴影部分的面积1.1.规则图形规则图形:按规则图形的面积公式求按规则图形的面积公式求.2.2.不规则图形不规则图形:采用采用“
4、化归化归”的数学思想方法的数学思想方法,把不规则图形的面把不规则图形的面积转化成规则图形的面积。积转化成规则图形的面积。聚焦考点考点一考点一 弧长与扇形的面积弧长与扇形的面积考点二考点二 与圆锥有关的计算与圆锥有关的计算考点三考点三 不规则图形的面积不规则图形的面积考点考点一一 弧长与扇形的面积弧长与扇形的面积例例1 (2018(2018淄博淄博)如图如图,O O的直径的直径ABAB=6,=6,若若BACBAC=50=50,则劣弧则劣弧ACAC的长为的长为()()A.2B.C.D.833443解析如图解析如图,连接连接COCO,BAC=50BAC=50,AO=CO=3,AO=CO=3,ACO=
5、50ACO=50,AOC=80,AOC=80,劣弧劣弧ACAC的长的长为为 =.故选故选D.D.80318043变式变式1 1 (2017 (2017烟台烟台)如图如图,ABCDABCD中中,B B=70=70,BCBC=6,=6,以以ADAD为直为直径的径的O O交交CDCD于点于点E E,则则 的长为的长为 ()()A.A.B.B.C.C.D.D.DE13237643解析连接解析连接OEOE,如图所示如图所示.四边形四边形ABCDABCD是平行四边形是平行四边形,D=B=70D=B=70,AD=BC=6,AD=BC=6,OA=OD=3,OA=OD=3,OD=OE,OED=D=70OD=OE
6、,OED=D=70,DOE=180DOE=180-2-27070=40=40,的长的长=.故选故选B.B.方法技巧方法技巧在解答有关弧长在解答有关弧长或扇形面积的计算问题时或扇形面积的计算问题时,熟记熟记计算公式是解题的关键计算公式是解题的关键.403180D E23例例2CDCD解:连接OA、OB,作OCAB于C交 O于D,由题意得,OC OA,OAC30,OAOB,OBAOAC30,AOB120,21考点二考点二 与圆锥有关的计算与圆锥有关的计算例例3 (2018(2018仙桃仙桃)一个圆锥的侧面积是底面积的一个圆锥的侧面积是底面积的2 2倍倍,则该圆锥侧则该圆锥侧面展开图的圆心角的度数是
7、面展开图的圆心角的度数是()()A.120A.120 B.180 B.180 C.240 C.240 D.300 D.300r rl l=2=2r r2 2解析设圆锥的母线长为解析设圆锥的母线长为l l,底面半径为底面半径为r r,圆锥侧面展开图的圆心圆锥侧面展开图的圆心角为角为n n,圆锥的侧面积是底面积的圆锥的侧面积是底面积的2 2倍倍,r rl l=2=2r r2 2,l l=2=2r r.n=180n=180360nlr36021n变式变式(2017(2017泰安泰安)工人师傅用一张半径为工人师傅用一张半径为24 cm,24 cm,圆心圆心角为角为150150的扇形铁皮做成一个圆锥的侧
8、面的扇形铁皮做成一个圆锥的侧面,则这个则这个圆锥的高为圆锥的高为 _.360nlr变式变式(2017(2017泰安泰安)工人师傅用一张半径为工人师傅用一张半径为24 cm,24 cm,圆心角为圆心角为150150的扇形铁皮做成一个圆锥的侧面的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为则这个圆锥的高为 _.解析解析扇形的半径为扇形的半径为24 cm,24 cm,圆心角为圆心角为150150,222410476119360nlr由由 得得圆锥的底面半径圆锥的底面半径=10(cm).=10(cm).圆锥的高圆锥的高=2=2(cm).(cm).例例4如图,在半径为如图,在半径为2,圆心角为,圆心角为
9、90的扇形内,以的扇形内,以BC为直径作半圆为直径作半圆,交弦,交弦AB于点于点D,连接,连接CD,则图中阴影部分的面积为,则图中阴影部分的面积为_.(结果用含(结果用含的式的式子表示)子表示)【思维教练【思维教练】由题易知,由题易知,CD=DB,则,则S弓形弓形CDS弓形弓形DB,S阴影阴影S扇形扇形ACB-SACD,根据面积公式计算即可求解,根据面积公式计算即可求解.考点三考点三 不规则图形的面积不规则图形的面积例例5 (2017 (2017济宁济宁)如图如图,在在RtRtABCABC中中,ACBACB=90=90,ACAC=BCBC=1,=1,将将RtRtABCABC绕点绕点A A逆时针
10、旋转逆时针旋转3030后得到后得到RtRtADEADE,点点B B经过的路径为经过的路径为,则图中阴影部分的面积是则图中阴影部分的面积是()()A.B.C.-D.BD6321212解析解析ACBACB=90=90,ACAC=BCBC=1,=1,ABAB=,S S扇形扇形ABDABD=.又又RtRtABCABC绕绕A A点逆时针旋转点逆时针旋转3030后得到后得到RtRtADEADE,RtRtADEADERtRtABCABC,S S阴影部分阴影部分=S SADEADE+S S扇形扇形ABDABD-S SABCABC=S S扇形扇形ABDABD=.故选故选A.A.2230(2)36066例例6HH
11、小结 弧长与扇形的面积公式弧长与扇形的面积公式 圆锥的侧面积及全面积公式圆锥的侧面积及全面积公式 如何求阴影部分面积如何求阴影部分面积一、选择题一、选择题1.(2018德州)如图,从一块直径为2 m的圆形铁皮上剪出一个圆心角为90的扇形.则此扇形的面积为()A.m2 B.m2 C.m2 D.2 m2 232作业2.若一个圆锥的侧面展开图是半径为18 cm,圆心角为240的扇形,则这个圆锥的底面半径为()A.6 cmB.9 cmC.12 cmD.18 cm3.(2017淄博)如图,半圆O的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+B.2+2 C.4+D.2+4