1、课题:2.4.2等比数列(2)主备人:执教者:【学习目标】灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法。【学习重点】等比中项的理解与应用【学习难点】灵活应用等比数列定义、通项公式、性质解决一些相关问题【授课类型】新授课【教 具】多媒体、实物投影仪【学习方法】诱思探究法【学习过程】一、复习引入:首先回忆一下上一节课所学主要内容:1等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)2.等比数列的通项公式
2、: , 3成等比数列=q(,q0) “0”是数列成等比数列的必要非充分条件4既是等差又是等比数列的数列:非零常数列二、新课学习:1等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项. 即G=(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G=ab,则,即a,G,b成等比数列。a,G,b成等比数列G=ab(ab0)三、例题课本P58例4 证明:设数列的首项是,公比为;的首项为,公比为,那么数列的第n项与第n+1项分别为:它是一个与n无关的常数,所以是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列与,数列也
3、一定是等比数列吗?探究:设数列与的公比分别为,令,则,所以,数列也一定是等比数列。课本P59的练习4已知数列是等比数列,(1)是否成立?成立吗?为什么?(2)是否成立?你据此能得到什么结论?是否成立?你又能得到什么结论?结论:2等比数列的性质:若m+n=p+k,则在等比数列中,m+n=p+q,有什么关系呢?由定义得: ,则四、课堂练习:课本P59-60的练习3、5五、课堂小结:1、若m+n=p+q,2、若是项数相同的等比数列,则、也是等比数列六、作业布置:课时作业2.4.2个性设计课后反思:高一数学测试题一 选择题:本大题共l0小题,每小题5分,满分50分在每小题给出的四个选项中只有一项是符合
4、题目要求的1设集合x0,B=x|-1x3,则AB=( )A-1,0 B-3,3 C0,3 D-3,-12.下列图像表示函数图像的是( )A B C D3. 函数的定义域为( )A(5,) B5,C(5,0) D (2,0)4. 已知,则的大小关系是( )A B C D 5.函数的实数解落在的区间是( ) 6.已知则线段的垂直平分线的方程是( ) 7. 下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 8. 如图,在RtABC中,ABC=
5、90,P为ABC所在平面外一点PA平面ABC,则四面体P-ABC中共有( )个直角三角形。 A 4 B 3 C 2 D 19.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于() A B C D 10 .在圆上,与直线的距离最小的点的坐标为( ) 二 填空题本大题共4小题,每小题5分,满分20分11.设,则的中点到点的距离为 .12. 如果一个几何体的三视图如右图所示(单位长度:cm), 则此几何体的表面积是 .13.设函数在R上是减函数,则的范围是 .14.已知点到直线距离为,则= .三、解答题:本大题共6小题,满分80分解答须写出文字说明、证明过程和演算步骤15. (本小题满分10分
6、)求经过两条直线和的交点,并且与直线垂直的直线方程(一般式).16. (本小题满分14分)如图,的中点.(1)求证:;(2)求证:; 17. (本小题满分14分)已知函数(14分)(1)求的定义域;(2)判断的奇偶性并证明;18. (本小题满分14分)当,函数为,经过(2,6),当时为,且过(-2,-2),(1)求的解析式;(2)求;(3)作出的图像,标出零点。19. (本小题满分14分)已知圆:,(1)求过点的圆的切线方程;(2)点为圆上任意一点,求的最值。20.(本小题满分14分)某商店经营的消费品进价每件14元,月销售量Q(百件)与销售价格P(元)的关系如下图,每月各种开支2000元,(
7、1) 写出月销售量Q(百件)与销售价格P(元)的函数关系。(2) 该店为了保证职工最低生活费开支3600元,问:商品价格应控制在什么范围?(3) 当商品价格每件为多少元时,月利润并扣除职工最低生活费的余额最大?并求出最大值。答案一选择(每题5分) 1-5 A C A C B 6-10 B D A B C二填空(每题5分) 11. 12. 13. 14. 1或-3三解答题15.(10分) 16.(14分) (1)取1分 为中点, (2)17.(14分)(1)由对数定义有 0,(2分)则有(2)对定义域内的任何一个,1分都有, 则为奇函数4分18.14分(1).6分(2) 3分(3)图略3分. 零点0,-12分19.14分(1)设圆心C,由已知C(2,3) , 1分AC所在直线斜率为, 2分则切线斜率为,1分则切线方程为。 2分(2)可以看成是原点O(0,0)与连线的斜率,则过原点与圆相切的直线的斜率为所求。1分圆心(2,3),半径1,设=k,1分则直线为圆的切线,有,2分解得,2分 所以的最大值为,最小值为 2分20.14分(1) 4分(2)当时,1分即,解得,故; 2分当时, 1分即,解得,故。2分所以(4) 每件19.5元时,余额最大,为450元。4分10