1、第四章 图形的初步认识与三角形 第16讲 线段、角、相交线与平行线 考点一考点一 线段、射线、直线线段、射线、直线 1两点间的距离 连接两点间线段的长度叫做这两点间的距离 2线段的和与差:如图,在线段 AC上取一点 B,则 ABBCAC;ABACBC;BCACAB.3线段的中点(1)如图,点 B 在线段 AC 上,且 ABBC,则点B 叫做线段 AC的中点 (2)线段中点的几何表示 ABBC12AC;AC2AB2BC .4线段的性质(1)两点的所有连线中,线段最短(2)过两点有且只有一条直线 5直线、射线、线段的区别与联系 项目 类别 端点个数 可延伸方向个数 表 示 图形示例 直 线 0 2
2、 两个大写字母或一个小写字母 射 线 1 1 两个大写字母 线 段 2 0 两个大写字母或一个小写字母 考点二考点二 角、余角、补角角、余角、补角 1有公共端点的两条射线组成的图形叫做角;如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫做直角;大于直角小于平角的角叫做钝角;大于 0 小于直角的角叫做锐角 21 周角360 度,1 平角180 度,1 直角 90 度,1 60 分,1 分60 秒 3余角、补角及其性质(1)互余:如果两个角的和等于90(直角),那么这两个角互为余角(2)互补:如果两个角的和等于180(平角),那么这两个角互为补角(3)性质:同角(等角)的余角相等;同角
3、(等角)的补角相等 温馨提示:温馨提示:1.互为补角、互为余角是相对两个角而言,它们都是由数量关系来定义的,与位置无关.2.一副三角尺,各个角的度数分别为90、60、45、30,将各个角相加或相减,画出的角的度数都是15 的倍数.考点三考点三 相交线相交线 1对顶角的性质 对顶角相等 2垂线(1)平面内经过一点有且只有一条直线与已知直线垂直 (2)连接直线外一点与直线上各点的所有线段中,垂线段最短(简记为:垂线段最短)(3)点到直线的距离:直线外一点到这条直线的 垂线段的长度叫做点到直线的距离 考点四考点四 平行线的性质和判定平行线的性质和判定 1平行公理 经过直线外一点有且只有 一条直线与已
4、知直线 平行 2平行线的性质(1)如果两条直线平行,那么同位角相等;(2)如果两条直线平行,那么内错角相等;(3)如果两条直线平行,那么同旁内角互补 3平行线的判定(1)定义:在同一平面内不相交的两条直线,叫做平行线;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)同旁内角互补,两直线平行 温馨提示:温馨提示:除上述平行线的判定方法外,还有“在同一平面内垂直于同一条直线的两条直线平行”及“平行于同一条直线的两条直线平行”的判定方法.考点一 线段、角的相关计算 例 1(2014湖州)计算:50 15 30_.【点拨】1 60,50 15 3049 6015 3034 30.【答
5、案】34 30 方法总结:在进行度、分、秒的运算时,要注意单位是60 进制,与计量时间的时、分、秒相同.考点二 余角、补角的计算 例 2(2014邵阳)已知13,则 的余角大小是_【点拨】的余角90 90 13 77.【答案】77 方法总结:方法总结:利用互余或互补的定义直接计算求值或构建方程求解.考点三 平行线的性质与判定 例 3(2014荆门)如图,ABED,AG平分BAC,ECF70,则FAG 的度数是()A155 B145 C110 D35 【点拨】ABED,ECF70,BAC70.AG平分BAC,CAG12BAC35.FAG180 CAG180 35 145.故选 B.【答案】B 1
6、如图,ABCD,点E在CD上,EG与AB交于点F,DFEG于点F,若D25,则GFB的度数是()A25 B55 C65 D75 解析:DFEG,DFE90.D25,DEF90 25 65.ABCD,GFBDEF65.故选 C.答案:C 2如图,下列说法中不正确的是()A因为ABCD,所以13 B因为24,所以AECF C因为AECF,所以24 D因为13,24,所以ABCD 解析:A中,1和3不是被同一条直线截AB和CD所得的角,不相等,故A错误;B中,根据同位角相等,两直线平行可得AECF,故B正确;C中,根据两直线平行,同位角相等即可得24,故C正确;D中,13,24,则1234,然后根据
7、同位角相等,两直线平行可得ABCD,故D正确故选A.答案:A 3如图,AOBCOD90,BOC42,则AOD等于()A48 B148 C138 D128 解析:由图可知,AOD360 AOBBOCCOD360 90 42 90 138.故选 C.答案:C 4如图,C 是线段 AB上的一点,M 是线段 AC的中点,若 AB8 cm,MC3 cm,则 BC 的长是(A)A2cm B3 cm C4 cm D6 cm 解析:解析:点 M 是 AC的中点,AC2MC236(cm)BCABAC862(cm),故选 A.5如图,已知直线 EFMN,垂足为 F,且1140,若 ABCD,则2 等于()A50
8、B40 C30 D60 解析:如图,ABCD,34.又13 180,1 140,3 4 40.又EFMN,2490,250.故选 A.答案:A 6如图,在ABC 中,C90,AC3,BC4,点P是边BC上的动点,则AP的长不可能是()A2.5 B3 C4 D5 解析:C90,ACBC.由点 A 到 BC的最短距离为 3.当点 P 和点 C 重合时,AP3;当点 P 和点 B 重合时,AP5.3AP5.故选 A.答案:A 7一副三角尺叠在一起水平放置,如图,最小锐一副三角尺叠在一起水平放置,如图,最小锐角的顶点角的顶点 D 恰好放在等腰直角三角尺的斜边恰好放在等腰直角三角尺的斜边 AB 上,上,
9、BC 与与 DE 交于点交于点 M.如果如果ADF100,那么,那么BMD为为 度度.解析:ADF100,FDE30,又ADFFDEMDB180,MDB180 100 30 50.又B45,且BBMDMDB180,BMD180 50 45 85.答案:85 考点训练考点训练 一、选择题一、选择题(每小题 3 分,共 36 分)1已知A60,则A的补角是(B)A160 B120 C60 D30 2(2014铜仁铜仁)下列图形中,1 与2 是对顶角的是(C)解析:对顶角是两条直线相交形成的有公共顶点且两边互为反向延长线的两个角故选 C.3(2014济宁)把一条弯曲的公路改成直道,可以缩短路程用几何
10、知识解释其道理正确的是(C)A两点确定一条直线 B垂线段最短 C两点之间线段最短 D三角形两边之和大于第三边 解析:弯曲的公路改成直道,就是用线段连接公路两端,用的几何知识是“两点之间线段最短”故选 C.4(2014上海上海)如图,已知直线 a,b 被直线 c 所截,那么1 的同位角是()A2 B3 C4 D5 解析:1 和2 分别在直线 a,b 的上方,并且都在直线 c 的左侧,所以是同位角故选 A.答案:A 5(2014白银白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与 互余的角共有()A4 个 B3 个 C2 个 D1 个 解析:如图,由题意知2,
11、13,390,190,故与 互余的角共有 2 个故选 C.答案:C 6(2014长春长春)如图,直线 a 与直线 b 交于点 A,与直线 c 交于点 B,1120,245,若使直线b 与直线 c 平行,则可将直线b 绕点 A 逆时针旋转()A15 B30 C45 D60 解析:如图,1120,360.245,当3245 时,bc,可将直线 b 绕点A逆时针旋转 60 45 15.故选 A.答案:A 7一副三角尺有两个直角三角形,如图叠放在一起,则 的度数是()A165 B120 C150 D135 解析:如图,在直角三角形ABC 中,A30,则CBP60;在直角三角形 CDE 中,D45,CE
12、P45,在四边形 CEPB 中,360 45 60 90165.故选 A.答案:A 8(2014长沙长沙)如图,C,D 是线段 AB 上的两点,且 D 是线段 AC的中点,若 AB10 cm,BC4 cm,则 AD的长为()A2cm B3cm C4cm D6 cm 解析:AB10 cm,BC4 cm,ACABBC1046(cm)D 是线段 AC的中点,AD12AC1263(cm)故选 B.答案:B 9(2013昭通昭通)如图,ABCD,DBBC,250,则1 的度数是()A40 B50 C60 D140 解析:DBBC,DBC90.250,DCB90 290 50 40.ABCD,1DCB40
13、.故选 A.答案:A 10(2014菏泽菏泽)如图,直线 lmn,等边ABC的顶点 B,C 分别在直线 n 和 m 上,边 BC 与直线 n所夹锐角为 25,则 的度数为()A25 B45 C35 D30 解析:如图,lm,ACD.mn,边 BC 与直线 n 所夹锐角为 25,BCD CBE25.ABC是等边三角形,ACB60.ACDACB BCD60 25 35.故选 C.答案:C 11(2014河南河南)如图,直线 AB,CD 相交于点 O,射线 OM 平分AOC,ONOM.若AOM35,则CON 的度数为()A35 B45 C55 D65 解析:OM 平分AOC,AOMCOM35.ONO
14、M,MON90,即COMCON90,CON55.故选 C.答案:C 12(2014遵义遵义)如图,直线如图,直线 l1l2,A125,B85,则,则12()A30 B35 C36 D40 解析:如图,作ACBDl1,l1l2,ACBD l1l2.1CAE,2DBF,CABDBA 180.CAECABDBADBF125 85 210,12210 180 30.故选A.答案:A 二、填空题(每小题 4 分,共 24 分)13(2014广安)若 的补角为 7628,则 10332.解析:由补角的定义,可得180 7628 10332.14如图,直线 AB,CD 相交于点 O,若BOD40,OA平分C
15、OE,则AOE 40.解析:解析:BOD 40,AOC和BOD 是对顶角,AOCBOD40.又OA平分COE,AOEAOC40.15(2014永州永州)如图,已知 ABCD,1130,则2 50.解析:1130,CEF180 1180130 50.ABCD,2CEF50.16(2013成都成都)如图,B30,若 ABCD,CB 平分ACD,则ACD 60 度 解析:B30,ABCD,BCDB30.CB 平分ACD,ACD2BCD60.17.如图,ABCD,160,FG 平分EFD,则2 30.解析:解析:ABCD,160,EFD160.FG 平分EFD,212EFD30.18(2014台州台州
16、)如图折叠一张矩形纸片,已知 170,则2 的度数是 .解析:如图,由矩形纸片的对边平行可得3170.又由折叠的性质和平角的定义,可得322180,22180 70 110,255.答案:55 三、解答题(共 40 分)19(8 分)(2014淄博)如图,直线 ab,点 B 在直线 b 上,且 ABBC,155,求2 的度数 分析:由垂直的定义和平角的定义求出3 的度数,再由平行线的性质得出2 的度数 解:如图,ABBC,1390.155,335.ab,2335.点评:点评:本题考查垂直的定义与平行线的性质,利用平行线的性质建立未知角与已知角之间的关系是解题的关键 20(10 分)(2014益
17、阳益阳)如图,EFBC,AC 平分BAF,B80.求C 的度数 分析:分析:思路一:根据两直线平行,同旁内角互补,可得BAF 的度数,由 AC平分BAF 可求得CAF的度数,再根据两直线平行,内错角相等可得C 的度数;思路二:与求CAF 的度数同理可求出BAC的度数,然后利用三角形内角和定理求出C 的度数 解:解:方法一:EFBC,BAF180 B100.AC 平分BAF,CAF12BAF50.EFBC,CCAF50.方法二:EFBC,BAF180 B100.AC平分BAF,BAC12BAF50.CBBAC180,C180(80 50)50.点评:点评:本题考查了角平分线的概念、平行线的性质、
18、三角形内角和定理,解题的关键是掌握平行线的性质和三角形内角和定理 21(10 分)如图,CDAB 于点 D,点 E 为 BC边上的任意一点,EFAB 于点 F,且12,那么 BC 与 DG 平行吗?请说明理由 解:解:BC 与 DG 平行理由如下:CDAB,EFAB,CDEF,1 BCD.又12,2BCD,BCDG.22.(12 分)(2014赤峰)如图,E 是直线 AB,CD内部一点,ABCD,连接 EA,ED,(1)探究猜想:若A30,D40,则AED 等于多少度?若A20,D60,则AED 等于多少度?猜想图中AED,EAB,EDC 的关系并证明你的结论(2)拓展应用:如图,射线 FE
19、与矩形 ABCD的边 AB交于点 E,与边 CD 交于点 F,分别是被射线 FE 隔开的4个区域(不含边界,其中区域位于直线 AB 上方),P 是位于以上四个区域上的点,猜想:PEB,PFC,EPF 的关系(不要求证明)分析:分析:(1)过点 E 作 EFAB,根据平行公理的推论可得 EFDC,然后根据平行线的性质,可得AEDAD;(2)仿照(1)的方法,过点 P 作 AB的平行线,然后利用平行线的性质,对四个区域逐个进行分析,从而得出三个角之间的关系 解:解:(1)AED70;AED80;猜想:AEDEABEDC.证明:如图,过点 E 作 EFAB,则 EFABCD,AEFEAB,FEDED
20、C.AEDAEFFEDEABEDC.(2)当点 P 在区域时,PEBPFCEPF360;当点 P 在区域时,EPFPEBPFC;当点 P 在区域时,PEBPFCEPF;当点 P 在区域时,PFCPEBEPF.点评:点评:本题考查了平行线的性质,解题的关键是掌握平行公理的推论和平行线的性质特别注意当点 P 在区域时还需要考虑三角形外角的性质?1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。?2、从善如登,从恶如崩。?3、现在决定未来,知识改变命运。?4、当你能梦的时候就不要放弃梦。?5、龙吟八洲行壮志,凤舞九天挥鸿图。?6、天下大事,必作于细;天下难事,必作于易。?7
21、、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。?8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。?9、永远不要逃避问题,因为时间不会给弱者任何回报。?10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。?11、明天是世上增值最快的一块土地,因它充满了希望。?12、得意时应善待他人,因为你失意时会需要他们。?13、人生最大的错误是不断担心会犯错。?14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。?15、不管怎样,仍要坚持,没有梦想,永远到不了远方。?16、心态决定命运,自信走向成功。?17、第一个青春是上帝给的;第二个
22、的青春是靠自己努力的。?18、励志照亮人生,创业改变命运。?19、就算生活让你再蛋疼,也要笑着学会忍。?20、当你能飞的时候就不要放弃飞。?21、所有欺骗中,自欺是最为严重的。?22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。?23、天行健君子以自强不息;地势坤君子以厚德载物。?24、态度决定高度,思路决定出路,细节关乎命运。?25、世上最累人的事,莫过於虚伪的过日子。?26、事不三思终有悔,人能百忍自无忧。?27、智者,一切求自己;愚者,一切求他人。?28、有时候,生活不免走向低谷,才能迎接你的下一个高点。?29、乐观本身就是一种成功。乌云后面依然是灿烂的
23、晴天。?30、经验是由痛苦中粹取出来的。?31、绳锯木断,水滴石穿。?32、肯承认错误则错已改了一半。?33、快乐不是因为拥有的多而是计较的少。?34、好方法事半功倍,好习惯受益终身。?35、生命可以不轰轰烈烈,但应掷地有声。?36、每临大事,心必静心,静则神明,豁然冰释。?37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。?38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。?39、人的价值,在遭受诱惑的一瞬间被决定。?40、事虽微,不为不成;道虽迩,不行不至。?41、好好扮演自己的角色,做自己该做的事。?42、自信人生二百年,会当水击三千里。
24、?43、要纠正别人之前,先反省自己有没有犯错。?44、仁慈是一种聋子能听到、哑巴能了解的语言。?45、不可能!只存在于蠢人的字典里。?46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。?47、小事成就大事,细节成就完美。?48、凡真心尝试助人者,没有不帮到自己的。?49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。?50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。?51、对于最有能力的领航人风浪总是格外的汹涌。?52、思想如钻子,必须集中在一点钻下去才有力量。?53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过
25、一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。?54、最伟大的思想和行动往往需要最微不足道的开始。?55、不积小流无以成江海,不积跬步无以至千里。?56、远大抱负始于高中,辉煌人生起于今日。?57、理想的路总是为有信心的人预备着。?58、抱最大的希望,为最大的努力,做最坏的打算。?59、世上除了生死,都是小事。从今天开始,每天微笑吧。?60、一勤天下无难事,一懒天下皆难事。?61、在清醒中孤独,总好过于在喧嚣人群中寂寞。?62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。?63、彩虹风雨后,成功细节中。?64、有
26、些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。?65、只要有信心,就能在信念中行走。?66、每天告诉自己一次,我真的很不错。?67、心中有理想 再累也快乐?68、发光并非太阳的专利,你也可以发光。?69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。?70、当你的希望一个个落空,你也要坚定,要沉着!?71、生命太过短暂,今天放弃了明天不一定能得到。?72、只要路是对的,就不怕路远。?73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。?74、先知三日,富贵十年。付诸行动,你就会得到力量。?75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。?76、好习惯成就一生,坏习惯毁人前程。?77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。?78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。?79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。?80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。