2流体流动解读课件.ppt

上传人(卖家):晟晟文业 文档编号:4983021 上传时间:2023-01-30 格式:PPT 页数:43 大小:750.50KB
下载 相关 举报
2流体流动解读课件.ppt_第1页
第1页 / 共43页
2流体流动解读课件.ppt_第2页
第2页 / 共43页
2流体流动解读课件.ppt_第3页
第3页 / 共43页
2流体流动解读课件.ppt_第4页
第4页 / 共43页
2流体流动解读课件.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、流体:气体和液体的统称。流体的特性:流动性;无固定形状,随容器的形状而变化;在外力作用下其内部发生相对运动。流体流动规律在化工生产中的应用:1)解决流体的输送问题;2)压力、流速、流量的测量;3)为强化设备能力提供适宜的条件。概述概述 流体输送是化工生产过程常见的单元操作之一。为了将流体从一处送到另一处,不论是提高其位置高度或增加其压强,还是克服管路的沿程阻力,都需要向流体施加外部机械能。流体输送机械就是向流体作功以提高其机械能的装置。目前流体输送机械为通用机械产品,在生产中如何选用既符合生产需要,又比较经济合理的输送机械,同时在操作中做到安全可靠、高效率运行,除了熟知被输送流体的性质、工作条

2、件外,还必须了解各类输送机械的工作原理、结构和特性,以便进行正确地选择和合理使用。本章内容就是介绍常用的流体输送机械及其工作原理、选型计算等。2023年1月30日3/71补充能量:将流体从一处输送到另一处提高压强:给流体加压造成设备真空:给流体减压 为液体提供能量的输送机械称为泵,如离心泵、往复泵、旋涡泵等。为气体提供能量的输送机械称为风机或压缩机,如离心通风机、鼓风机等。对生产上不同的要求采用不同的输送机械。原因:流体是多种多样的。水、油、腐蚀性流体等操作条件千差万别:输送量、效率、轴功率概括来说,输送机械应满足如下要求:(1)满足工艺上对流率和能量的要求。(2)结构简单,重量轻,投资费用低

3、。(3)运行可靠,操作效率高,日程操作费用低。(4)能适应被输送流体的特性,其中包括粘性、腐蚀性、毒性、可燃性、爆炸性、含固体杂质等。流体输送机械按照其工作原理分为:(1)动力式:利用高速旋转的叶轮使流体的机械能增加,典型的是离心式、轴流式输送机械。(2)容积式:利用活塞或转子运动改变工作室容积而对流体作功。典型的是往复式、旋转式输送机械。(3)其它类型:如利用另外一种流体作用的喷射式等。2023年1月30日6/71离心泵离心泵 液体输送机械的种类很多,按照工作原理的不同,分为离心泵、往复泵、旋转泵、旋涡泵等几种,其中,离心泵由于其适用范围广、操作方便,便于实现自动调节和控制而在化工生产中应用

4、最为普遍。离心泵的基本结构和工作原理离心泵的基本结构和工作原理离心泵的基本结构离心泵的基本结构离心泵主要由叶轮、泵壳等组成,由若干弯曲叶片组成的叶轮紧固在泵轴上安装在蜗壳形的泵壳内。泵壳中央的吸入口与吸入管路相连,侧旁的排出口与排出管路连接,如图。离心泵的类型与选用离心泵的类型与选用 实际生产过程中,输送的液体是多种多样的,工艺流程中所需提供的压头和流量也是千差万别的,为了适应实际需要,离心泵的种类很多。气体输送机械气体输送机械输送和压缩气体的设备统称气体压送机械。用途:v气体输送v产生高压气体v产生真空气体输送机械与液体输送机械的结构和工作原理大致相同,其作用都是向流体做功以提高流体的静压强

5、。但是由于气体具有可压缩性和密度较小,对输送机械的结构和形状都有一定影响,其特点是:v对一定质量的气体,由于气体的密度小,体积流量就大,因而气体输送机械的体积大。v气体在管路中的流速要比液体流速大得多,输送同样质量流量的气体时,其产生的流动阻力要多,因而需要提高的压头也大。v由于气体具有可压缩性,压强变化时其体积和温度同时发生变化,因而气体输送和压缩设备的结构、形状有一定特殊要求。分类:分类:按结构与工作原理分:v离心式v往复式v选择式v流体力学作用式按终压(气体出口表压p2)和压缩比(气体出口与进口绝压之比x)分:v通风机:p215kPa,x11.15,主要结构有离心式、轴流式,用于通风换气

6、和送气。v鼓风机:p215294kPa,x4,主要结构为多级离心式、旋转式,用于输送气体。v压缩机:p2294kPa,x4,主要为往复式结构,用于产生高压气体。v真空泵:p2为大气压,x由真空度而定,结构为旋转式,用于将设备中气体抽出而减压。2023年1月30日10/71离心泵的工作原理离心泵的工作原理离心泵启动前应在泵壳内灌满所输送的液体,当电机带动泵轴旋转时,叶轮亦随之高速旋转(转速一般为10003000r/min)。叶轮的旋转一方面迫使叶片间的液体在随叶轮作等角速旋转的同时,另一方面,由于受离心力的作用使液体向叶轮外缘作径向运动。在液体被甩出的过程中,流体通过叶轮获得了能量,并以1525

7、m/s的速度进入泵壳。在蜗壳中由于流道的逐渐扩大,又将大部分动能转变为静压强,使压强进一步提高,最终以较高的压强沿切向进入排出管道,实现输送的目的,此即为排液原理排液原理。当液体由叶轮中心流向外缘时,在叶轮中心处形成了低压。在液面压强与泵内压强差的作用下,液体经吸入管路进入泵的叶轮内,以填补被排除液体的位置,此即为吸液原理吸液原理。只要叶轮旋转不停,液体就被源源不断地吸入和排出,这就是离心泵的工作原理。若离心泵在启动前泵壳内不是充满液体而是空气,由于空气的密度远小于液体的密度,产生的离心力很小,因而叶轮中心区形成的低压不足以将贮槽内液体压入泵内,此时虽启动离心泵但不能够输送液体,这种现象称作气

8、缚气缚。表示离心泵无自吸能力。因此在启动泵前一定要使泵壳内充满液体。通常若吸入口位于贮槽液面上方时,在吸入管路中安装一单向底阀和滤网,以防止停泵时液体从泵内流出和吸入杂物。2023年1月30日12/71 离心泵的主要部件离心泵的主要部件包括叶轮、泵壳、轴封装置1.叶轮叶轮 它通常由612片后弯叶片所组成,本身被固定在泵轴上并随之旋转。作用是将原动机的机械能直接传给液体,以提高液体的静压能和动能。根据其结构和用途分为开式、半开式和闭式三种。闭式叶轮:叶片两侧带有前后两块盖板,液体在两叶片间通道内流动时无倒流现象,适于输送较清洁的流体,输送效率高适于输送较清洁的流体,输送效率高,一般离心泵多采用这

9、种叶轮。半开式叶轮(半闭式叶轮):吸入口一侧无前盖板,适于输送含小颗粒的溶液,适于输送含小颗粒的溶液,输送效率低输送效率低。开式叶轮:没有前后盖板。适于输送含大颗粒的溶液,效率低没有前后盖板。适于输送含大颗粒的溶液,效率低。闭式或半闭式叶轮在工作时,部分高压液体可由叶轮与泵壳间的缝隙漏入两侧,除影响效率外也使叶轮受到指向液体吸入口的轴向推力,导致叶轮向吸入口移动,严重时造成与泵壳的接触摩擦直至损坏。为平衡轴向推力,可在叶轮后侧板上钻一些平衡孔,使漏入后侧的部分高压液体由平衡孔向低压区泄漏,减小两侧的压强差,但同时也使泵的效率有所下降。叶轮按其吸液方式的不同分为单吸式和双吸式两种,如图。双吸式叶

10、轮可从两侧同时吸液,吸液能力大,而且可基本上消除轴向推力。2.泵壳泵壳 泵壳亦称为蜗壳、泵体,构造为蜗牛壳形,其作用是将叶轮封闭在一定空间内,汇集引导液体的运动汇集引导液体的运动,并将液体的大部分动能转化为静压能动能转化为静压能。这是因为随叶轮旋转方向,叶轮与泵壳间的通道截面逐渐扩大至出口时达到最大,使能量损失减少的同时实现了能量的转化。为了减少由叶轮外缘抛出的液体与泵壳的碰撞而引起能量损失,有时在叶轮与泵壳间还安装一固定不动而带有叶片的导轮,以引导液体的流动方向(见图)。3.轴封装置轴封装置在泵轴伸出泵壳处,转轴和泵壳间存有间隙,在旋转的泵轴与泵壳之间的密封,称为轴封装置。其作用是防止高压液

11、体沿轴泄漏,或者外界空气以相反方向漏入。常用的有填料密封和机械密封。填料密封装置:由填料函壳、软填料和填料压盖构成,软填料为浸油或涂石墨的石棉绳,将其放入填料函与泵轴之间,将压盖压紧迫使它产生变形达到密封。3.轴封装置轴封装置(续续)机械密封装置:由装在泵轴上随之转动的动环和固定在泵壳上的静环组成,两环形端面由弹簧力使之紧贴在一起达到密封目的。动环用硬质金属材料制成,静环一般用浸渍石墨或酚醛塑料等制成。机械密封的性能优良,使用寿命长。当部件的加工精度要求高,安装技术要求比较严格,价格较高。用于输送酸、碱、盐、油等密封要求高的场合。离心泵的性能参数与特性曲线离心泵的性能参数与特性曲线 离心泵的主

12、要性能参数离心泵的主要性能参数为了正确地选择和使用离心泵,就必须熟悉其工作特性和它们之间的相互关系。反映离心泵工作特性的参数称为性能参数,主要有转速、流量、压头、轴功率和效率、气蚀余量等。离心泵一般由电机带动,因而转速是固定的,其性能参数通常在离心泵的铭牌或样本说明书中标明,以供选用时参考。1.流量流量 离心泵在单位时间内排出的液体体积,亦称为送液能力,用Q表示,单位为m3h。离心泵的流量与其结构、尺寸(叶轮直径和宽度)、转速、管路情况有关。2.压头压头 指离心泵对单位重量的液体所提供的有效能量,又称为扬程,用H表示,单位为m。泵的压头与泵的结构尺寸、转速、流量等有关。对于一定的泵和转速,压头

13、与流量间有一定的关系。压头的值由实验测定:在泵的入口和出口间泵的入口和出口间列柏努利方程,以单位重量流体为基准:21f222b2121b1Hgpg2uZHgpg2uZ H 供方He=We/g 需方HHe3.效率效率 指泵轴对液体提供的有效功率与泵轴转动时所需功率之比,称为泵的总效率,用表示,无因次,其值恒小于100%。它的大小反映泵在工作时能量损失的大小,泵的效率与泵的大小、类型、制造精密程度、工作条件等有关,由实验测定。离心泵的能量损失主要包括:(1)容积损失:由于泵的泄漏、液体的倒流等所造成,使得部分获得能量的高压液体返回去被重新作功而使排出量减少浪费的能量。容积损失用容积效率V表示。理论

14、流量实际流量100QQ%100TeV(2)机械损失:由于泵轴与轴承间、泵轴与填料间、叶轮盖板外表面与液体间的摩擦等机械原因引起的能量损失。机械损失用机械效率m表示。(3)水力损失:由于液体具有粘性,在泵壳内流动时与叶轮、泵壳产生碰撞、导致旋涡等引起的局部能量损失。水力损失用水力效率h表示。有效功率理论功率100NN%100eTm理论压头实际压头100HH%100Teh总效率:=vmh一般:小泵:=5070 大泵:904.轴功率轴功率 指泵轴转动时所需要的功率,亦即电机提供的功率,用N表示,单位kW。由于能量损失,轴功率必大于有效功率,即N=Ne/泵的轴功率与泵的结构、尺寸、流量、压头、转速等有

15、关。离心泵性能的影响因素离心泵性能的影响因素 离心泵的特性曲线是在一定转速下,以常温清水进行测定而得到的。使用时若输送液体的性质或其它条件与测定条件不同时,可导致泵的性能发生变化,具体影响如下。1.液体密度的影响离心泵的压头、流量均与液体的密度无关,故泵的效率亦不随而改变,但泵的轴功率随密度不同而变化,2液体粘度的影响当被输送液体的粘度大于常温下清水的粘度时,由于叶轮、泵壳内流动阻力的增大,致使泵的压头、流量都要减小,效率下降,而轴功率增大。3离心泵转速的影响当液体粘度不大且假设泵的效率不变,泵的转速变化小于20%时,泵的流量、压头、轴功率与转速的近似关系可按比例定律进行计算4叶轮直径的影响当

16、转速不变而减小叶轮直径时,泵的流量、压头、轴功率与叶轮直径的关系可按切割定律进行计算(叶轮直径变化20%):离心泵的工作点与流量调节离心泵的工作点与流量调节 据离心泵特性曲线知离心泵的工作运行范围很大,但实际工作时的运行状况要受到管路的制约,因为泵是安置在管路上工作的。因此要了解其工作状况,就必须了解管路的工作特性以及和泵特性之间的关系。离心泵的气蚀现象与安装高度离心泵的气蚀现象与安装高度 离心泵通过旋转的叶轮对液体做功,使液体机械能增加,在随叶轮的流动过程中,液体的速度和压强是变化的。通常在叶轮入口处压强最低,压强愈低愈容易吸液。但是当该处压强小于或等于输送温度下液体的饱和蒸汽压时(ppv)

17、液体将部分汽化,形成大量的蒸汽泡。这些气泡随液体进入叶轮后,由于压强的升高将受压破裂而急剧凝结,气泡消失产生的局部真空,使周围的液体以极高的速度涌向原气泡处,产生相当大的冲击力,致使金属表面腐蚀疲劳而受到破坏。由于气泡产生、凝结而使泵体、叶轮腐蚀损坏加快的现象,称为气蚀。气蚀现象发生时,将使泵体振动发出噪音;金属材料损坏加快,寿命缩短;泵的流量、压头等下降。严重时甚至出现断流,不能正常工作。为避免气蚀现象发生,必须在操作中保证泵入口处的压强大于输送条件下液体的饱和蒸汽压,这就要求泵的安装高度不能太高,应有一限制。离心泵的安装、使用和维护离心泵的安装、使用和维护 1)泵的实际安装高度应小于计算安

18、装高度,以免出现气蚀现象和吸不上液体,并按要求固定在基座上;2)启动前须向泵内灌满被输送液体,以防止气缚现象的发生,并检查泵轴转动是否灵活;3)启动时应关闭出口阀门,启动后先打开进口阀,待运行平稳后,缓缓开启出口阀。防止轴功率突然增大,损坏电机;4)停泵时先关闭出口阀,再关闭进口阀,然后停车;5)运转过程定时检查密封泄漏,电机发热,润滑注油等问题。其它类型液体输送机械其它类型液体输送机械 往复泵往复泵是一种典型的容积式输送机械。1.主要部件:泵缸、活塞、活塞杆、吸入阀和排出阀(均为单向阀)。活塞杆与传动机械相连,带动活塞在泵缸内作往复运动。活塞与阀门间的空间称为工作室。2.工作原理单动泵:活塞

19、一侧装有吸入阀和排出阀 活塞自左向右移动时,排出阀关闭,吸入阀打开,液体进入泵缸,直至活塞移至最右端。活塞由右向左移动,吸入阀关闭而排出阀开启,将液体以高压排出。活塞移至左端,则排液完毕,完成了一个工作循环,周而复始实现了送液目的。因此往复泵是依靠其工作容积改变对液体进行做功。在一次工作循环中,吸液和排液各交替进行一次,其液体的输送是不连续的。活塞往复非等速,故流量有起伏。Q双动泵活塞两侧的泵缸内均装有吸入阀和排出阀的往复泵。活塞自左向右移动时,工作室左侧吸入液体,右侧排除液体。活塞自右向左移动时,工作室右侧吸入液体,左侧排除液体。即活塞无论向那一方向移动,都能同时进行吸液和排液,流量连续,但

20、仍有起伏。QQ为此采用三台双动泵并联工作,其送液量较均匀。每个泵连接曲柄角度相差120O。2.往复泵特点往复泵特点由于往复泵的工作原理和操作调节等与离心泵不同,它具有如下特点:(1)往复泵的流量只与泵缸的尺寸和冲程、活塞的往复次数有关,而与泵的压头、管路等无关。理论上单动泵的流量:QTASnr双动泵的流量:QT(2A-a)S nr式中:QT 往复泵理论流量,m3/s;A 活塞截面积,m2;a 活塞杆截面积,m2;S 活塞的冲程(在泵缸内移动的距离),m;nr 活塞往复频率,1/s。实际上,由于泄漏,吸入和排出阀启闭不及时等原因,实际流量小于理论流量。实际流量:Q=VQT V容积效率(2)往复泵

21、的压头与泵的几何尺寸、流量无关,而由泵缸的机械强度和原动机的功率所决定。只要泵缸强度许可,理论上压头可达无限大,其特性曲线为QT常数。(3)由于往复泵的低压是靠工作室容积扩张造成的,因此启动时无需灌液,即往复泵具有自吸能力。往复泵的吸上真空度亦随外界大气压、液体输送条件而异,故其安装高度有一定限制。(4)流量调节不能用排出管路上的阀门,而应采用旁路调节或改变活塞的冲程和往复次数实现。(5)因往复泵的排液能力只与活塞位移有关,与管路无关,这种泵称为正位移泵。因此在启动泵时必须打开阀门,以防泵或管路损坏。主要用于小流量,高压强的场合,输送高粘度液体时效果比离心泵好。不能用于腐蚀性流体及有固体粒子的

22、悬浮液的输送。计量泵计量泵计量泵是往复泵的一种形式,它的传动装置是通过偏心轮把电机的旋转运动变成柱塞的往复运动。偏心轮的偏心距是可调的,用来改变柱塞的冲程,这样就可以达到严格地控制和调节流量的目的。计量泵通常用于要求精确而且便于调整的场合,特别适用于几种液体以一定配比的输送场合。隔膜泵隔膜泵实际上是柱塞泵,其结构特点四借弹性薄膜将被输送液体与活柱隔开,从而使得活柱和泵缸得以保护。隔膜左侧与液体接触的部分均由耐腐蚀材料制造或涂一层耐腐蚀物质;隔膜右侧充满水或油。当柱塞作往复运动时,迫使隔膜交替地向两侧弯曲,将被输送液体吸入或排出。弹性薄膜采用耐腐蚀橡胶或金属薄片制成。适于:定量输送剧毒、易燃、易

23、爆、腐蚀性液体和悬浮液。回转泵回转泵齿轮泵齿轮泵 齿轮泵也是正位移泵的一种,如图。泵壳内的两个齿相互啮合,按图中所示方向转动。在泵的吸入口,两个齿轮的齿向两侧拨开,形成低压将液体吸入。齿轮旋转时,液体封闭于齿穴和泵壳体之间,被强行压至排出端。在排出端两齿轮的齿相互合拢,形成高压将液体排出。齿轮泵产生较高的压头但流量小,用于输送粘稠液体及膏状物,但不能输送含固体颗粒的悬浮液。螺杆泵螺杆泵由泵壳和一根或几根螺杆构成。一根螺杆:螺杆和泵壳形成的空隙排送液体。两根衣衫螺杆:与齿轮泵类似,利用互相啮合的螺杆老排送液体。特点是压头高,效率效率高,噪音小。适于在高压下输送粘稠性液体。流量调节时用旁路(回流装

24、置)调节。旋涡泵旋涡泵 旋涡泵是一种特殊类型的离心泵。旋涡泵主要由叶轮和泵体组成。叶轮是一个圆盘,四周由凹槽构成的叶片呈辐射状排列(图b)。叶轮旋转过程中泵内液体随之旋转,且在径向环隙的作用下多次进入叶片并获得能量。因而液体在旋涡泵内流动与在多级离心泵中流动相类似。泵的吸入口和排出口由与叶轮间隙极小的间壁分开。旋涡泵旋涡泵(续续)根据旋涡泵的特性曲线图,其特点是:1压头随流量增大而大幅度下降,以旁路调节流量更为经济。2轴功率随流量的增大而减小,启动泵时应全开出口阀门。3由于在剧烈运动时进行能量交换,能量损失大,效率低,一般为20%50。旋涡泵工作时液体在叶片间的运动是由于离心力作用,在启动前泵

25、内也要灌满液体。它适用于高压头,小流量且粘度小的液体,不适于输送含固粒的液体。离心通风机离心通风机因终压小(15kPa),故常用于通风换气和送气。工业上常用的通风机为离心通风机,按其产生风压大小分为:v低压离心通风机:出口风压低于1kPa(表压)v中压离心通风机:出口风压在13kPa(表压)v高压离心通风机:出口风压在315kPa(表压)2.4.1.1离心通风机的结构和工作原理离心通风机的结构和工作原理 结构:机壳为蜗牛壳形,断面有方形和圆形;叶轮直径大,叶片数目多而且短。叶片有平直,前弯和后弯等形状,前弯叶片送风量大,但往往效率低,因此高效通风机的叶片通常是后弯的。v低压离心通风机:断面方形

26、,叶片平直,与中心成辐射状v中压离心通风机:断面方形,叶片弯曲v高压离心通风机:断面圆形,叶片弯曲工作原理:同离心泵 离心通风机的性能参数离心通风机的性能参数1.风量风量 单位时间内从风机出口排出的气体体积,并以风机进口处气体的状态计,以Q表示,单位m3/h。风量大小取决于风机的结构、叶轮尺寸(叶轮直径与叶片宽度)和转速。2.风压风压 单位体积的气体通过风机时所获得的有效能量,HT,Pa。风压的大小取决于风机的结构尺寸、转速和气体密度,其值目前只能通过实验测定。风机性能表上所列风压,一般是在20,101.3kPa条件下用空气测得的,此时空气密度为1.2kg/m3,在选用通风机时,若输送介质的条

27、件与上述实验条件不同时,应将实际风压HT换算为实验条件下风压H(实际风压HT由柏氏方程导出):3.轴功率和效率轴功率和效率轴功率和效率的定义同离心泵,其计算式为:计算时Q与H必须为同一状态下的值。风机性能表上给出的轴功率,也是指在20,101.3kPa条件下用空气测定值,当输送介质密度大于1.2kg/m3,应将实验条件下轴功率N换算为实际轴功率N:2.1HHHTTT HT、操作条件 HT、实验条件 全压效率kW,1000QHNT2.1NNN 离心通风机的类型与选择离心通风机的类型与选择1.类型类型 离心通风机按其用途分为排尘通风(C)、防腐蚀(F)、工业炉吹风(L)、耐高温(W)、防爆炸(B)

28、、冷却塔通风(LF),一般通风换气(T)等。其型号分别表示全压系数,通风机比转数,进口吸入型式及设计顺序号等。分别用数字和符号表示,例如:T4721110C右90vT 一般离心通风机的代号;v4 全压系数乘10后再按四舍五入进位,取一位数;v72 通风机比转数化整后的整数;v1 风机进口吸入型式代号(0为双侧吸入,1为单侧吸入,2为二级串联吸入);v1 设计顺序号,1表示第一次设计;v10 机号,风机叶轮直径的分米数,四舍五入后在前冠以“”表示;vC 传动方式代号(共六种方式,C表示悬臂支承,皮带轮在轴承外侧);v右 叶轮旋转方向(右为顺时针,左为逆时针);v90 风机出风口位置。在某型号下通风机的具体性能参见附录和有关资料。2离心通风机的选择(1)计算输送系统所需风量Q和风压HT风量根据生产任务规定值换算为进口状态计的气体流量;所需实际风压HT按柏努利方程进行计算,然后换为实验条件下的HT;(2)根据被输送气体的性质与风压的范围确定风机的类型;(3)根据Q和HT从风机样本中选择合适的型号,所选风机应留有一定余量;(4)核算风机的轴功率 特别当气体密度与实验条件下密度相差大时。离心式鼓风机、压缩机,旋转鼓风机、压缩机,往复压缩机,真空泵内容:v组成v工作原理v操作方法THE ENDThanks

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(2流体流动解读课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|