1、1.1.如图代表未折叠正方体的展开图,将其折叠起来,变成正如图代表未折叠正方体的展开图,将其折叠起来,变成正方体后,图形是方体后,图形是()()【解析】【解析】选选B.B.折叠后,不可能有三个折叠后,不可能有三个“空白空白”面,排除面,排除D D项;项;也没有面的正方形的中位线相连,排除也没有面的正方形的中位线相连,排除C C项;有中位线的三个项;有中位线的三个面面,其中位线应垂直于有圆的面,排除其中位线应垂直于有圆的面,排除A.A.简单多面体与球的接切问题简单多面体与球的接切问题 与定点的距离等于定长的点的集与定点的距离等于定长的点的集合,叫做合,叫做 。半圆以它的直径为旋转轴,旋半圆以它的
2、直径为旋转轴,旋转所成的曲面叫做转所成的曲面叫做球面球面.球面所球面所围成的几何体叫做围成的几何体叫做球体球体.球的旋转定球的旋转定义义球的集合定义球的集合定义 与定点的距离等于或小于定长的与定点的距离等于或小于定长的 点的集合,叫做点的集合,叫做球体球体。球面球面 性质性质2:球心和截面圆心的连线垂球心和截面圆心的连线垂 直于截面直于截面22dRr性质性质1:用一个平面去截用一个平面去截球球,截面是,截面是圆面圆面;用一个平面去截用一个平面去截球面球面,截线是截线是圆圆。大圆大圆-截面过球心,半径等于球半径;截面过球心,半径等于球半径;小圆小圆-截面不过球心截面不过球心性质性质3:球心到截面
3、的距离球心到截面的距离d与球与球 的半径的半径R及截面的半径及截面的半径r 有下面的关系有下面的关系:A正方体的内切球正方体的内切球,外接球外接球,棱切球棱切球1正方体与球正方体与球切点:切点:各个面的中心各个面的中心。球心:球心:正方体的中心正方体的中心。直径:直径:相对两个面中心连线相对两个面中心连线。o球的直径等于正方体棱长。aR 2一、正方体的内切球一、正方体的内切球二、球与正方体的棱相切二、球与正方体的棱相切球的直径等于正方体一个面上的对角线长aR22切点:切点:各棱的中点各棱的中点。球心:球心:正方体的中心正方体的中心。直径:直径:“对棱对棱”中点连线中点连线三、三、正方体的外接球
4、正方体的外接球球直径等于球直径等于正方体的(体)对角线aR32正方体的内切球正方体的内切球,棱切棱切球球,外接球外接球三个球心合一三个球心合一1:2:3半径之比为半径之比为:2长方体与球长方体与球一、长方体的外接球一、长方体的外接球长方体的(体)对角线等于球直径Rcbalcba2222,则、分别为设长方体的长、宽、高 一般的长方体有内切球吗?一般的长方体有内切球吗?没有。没有。一个球在长方体内部,最多一个球在长方体内部,最多可以和该长方体的可以和该长方体的5个面相切。个面相切。如果一个长方体有内切球,如果一个长方体有内切球,那么它一定是那么它一定是正方体正方体?例例1:如图,半球内有一内接正方
5、体,正方体:如图,半球内有一内接正方体,正方体的一个面在半球底面圆内。则这个半球的面的一个面在半球底面圆内。则这个半球的面积与正方体表面积的比为积与正方体表面积的比为()将半球补成整球将半球补成整球aaaal6)2(222分析分析2222222,22,232OAaOBRABaaaRRaOABOAB设球心为设球心为O,则,则O亦为底面正方形的中心亦为底面正方形的中心。如图,连结如图,连结OA、OB,则得,则得RtOAB.设正方体棱长为设正方体棱长为a,易知:,易知:222223662SRaSaa半球正方体3正四面体与球正四面体与球1.求棱长为求棱长为a的正四面体的外接球的半径的正四面体的外接球的
6、半径R.226.4Ra将正四面体放到正方体中,得正方体的棱长为a,且正四面体的外接球即正方体的外接球,所以 2.求棱长为求棱长为a的正四面体的棱切球的半径的正四面体的棱切球的半径R.24Ra正四面体的外接球和棱切球的球心重合。正四面体的外接球和棱切球的球心重合。3.求棱长为求棱长为a的正四面体的内切球的半径的正四面体的内切球的半径r.rShSV全面积底面积3131ar126 Sh Sr 底面积全面积14SrSh底面积全面积14rh正四面体的外接球和内切球的球心为什么重合?正四面体的外接球和内切球的球心为什么重合?63ha正四面体的外接球和内切球的球心一定重合正四面体的外接球和内切球的球心一定重合R:r=3:1ar126 64Ra24Ra正四面体的内切球正四面体的内切球,棱切棱切球球,外接球外接球三个球心合一三个球心合一3:1:33半径之比为半径之比为:1:2:3PABCMORR.正四面体的外接球还可利用直角三角形勾股定理来求PAMDEO DOPABCDKH.正四面体的正四面体的内切球还可利用截面三角形来求O1ABEO 132F 补形补形正四面体常常补成正四面体常常补成正方体正方体求外接球的半径求外接球的半径三条侧棱两两垂直的三棱锥常补成三条侧棱两两垂直的三棱锥常补成长方体长方体小结小结:常见的补形常见的补形