1、12.2三角形全等的判定第十二章 全等三角形导入新课讲授新课当堂练习课堂小结 第第2 2课时课时“边边角角边边”八年级数学上(RJ)教学课件情境引入学习目标1探索并正确理解三角形全等的判定方法“SAS”.(重点)2会用“SAS”判定方法证明两个三角形全等及进行简单的应用(重点)3.了解“SSA”不能作为两个三角形全等的条件(难点)1.回顾三角形全等的判定方法1 三边对应相等的两个三角形全等(可以简写为 “边边边”或“SSS”).在ABC和 DEF中 ABC DEF(SSS)AB=DEBC=EFCA=FD2.符号语言表达:ABCDEF当两个三角形满足六个条件中的3个时,有四种情况:三角三边两边一
2、角?两角一边 除了SSS外,还有其他情况吗?讲授新课讲授新课三角形全等的判定(“边角边”定理)一问题:已知一个三角形的两条边和一个角,那么这两条边与这一个角的位置上有几种可能性呢?ABCABC“两边及夹角”“两边和其中一边的对角”它们能判定两个三角形全等吗?尺规作图画出一个ABC,使ABAB,ACAC,AA(即使两边和它们的夹角对应相等).把画好的ABC剪下,放到ABC上,它们全等吗?A B C 探究活动探究活动1 1:SASSAS能否判定能否判定的两个三角形全等的两个三角形全等A B C A D E B C 作法:(1)画DAE=A;(2)在射线AD上截取AB=AB,在射线AE上截取AC=A
3、C;(3)连接BC.思考:A B C 与 ABC 全等吗?如何验证?这两个三角形全等是满足哪三个条件?在ABC 和 DEF中,ABC DEF(SAS)u 文字语言:文字语言:两边和它们的夹角分别相等的两个三角形全等(简写成“边角边”或“SAS”)知识要点“边角边”判定方法u几何语言:AB=DE,A=D,AC=AF,A B C D E F 必须是两边“夹角”人教版全等三角形ppt2人教版全等三角形ppt2例1:如果AB=CB,ABD=CBD,那么 ABD 和 CBD 全等吗?分析:ABD CBD.边:角:边:AB=CB(已知),ABD=CBD(已知),?ABCD(SAS)BD=BD(公共边).典
4、例精析证明:在ABD 和 CBD中,AB=CB(已知),ABD=CBD(已知),ABDCBD(SAS).BD=BD(公共边),人教版全等三角形ppt2人教版全等三角形ppt2变式1:已知:如图,AB=CB,1=2.求证:(1)AD=CD;(2)DB 平分 ADC.ADBC1243在ABD与CBD中,证明:ABDCBD(SAS),AB=CB (已知),1=2 (已知),BD=BD (公共边),AD=CD,3=4,DB 平分 ADC.人教版全等三角形ppt2人教版全等三角形ppt2ABCD变式2:已知:AD=CD,DB平分ADC,求证:A=C.12在ABD与CBD中,证明:ABDCBD(SAS),
5、AD=CD (已知),1=2 (已证),BD=BD (公共边),A=C.DB 平分 ADC,1=2.人教版全等三角形ppt2人教版全等三角形ppt2例2:如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CDCA,连接BC并延长到点E,使CECB连接DE,那么量出DE的长就是A、B的距离,为什么?CAEDB证明:在ABC 和DEC 中,ABC DEC(SAS),),AB=DE,(全等三角形的对应边相等).AC=DC(已知),),ACB=DCE(对顶角相等),),CB=EC(已知),证明线段相等或者角相等时,常常通过证明它们是全等三角形
6、的对应边或对应角来解决.归纳人教版全等三角形ppt2人教版全等三角形ppt2已知:如图,AB=DB,CB=EB,12,求证:A=D.证明:12(已知),1+DBC 2+DBC(等式的性质),即ABCDBE.在ABC和DBE中,ABDB(已知),ABCDBE(已证),CBEB(已知),ABCDBE(SAS).A=D(全等三角形的对应角相等).1A2CBDE人教版全等三角形ppt2人教版全等三角形ppt2想一想:如图,把一长一短的两根木棍的一端固定在一起,摆出ABC.固定住长木棍,转动短木棍,得到ABD.这个实验说明了什么?B A CDABC和ABD满足AB=AB,AC=AD,B=B,但ABC与A
7、BD不全等.探究活动探究活动2 2:SSA能否判定两个三角形全等几何画板:探究边边角.gsp人教版全等三角形ppt2人教版全等三角形ppt2画一画:画ABC 和DEF,使B=E=30,AB=DE=5 cm,AC=DF=3 cm 观察所得的两个三角形是否全等?ABMCDABCABD 有两边和其中一边的对角分别相等的两个三角形不一定全等.结论人教版全等三角形ppt2人教版全等三角形ppt2人教版全等三角形ppt2人教版全等三角形ppt2例3 下列条件中,不能证明ABCDEF的是()典例精析AABDE,BE,BCEFBABDE,AD,ACDFCBCEF,BE,ACDFDBCEF,CF,ACDF解析:
8、要判断能不能使ABCDEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合,故选C.C方法总结:判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的人教版全等三角形ppt2人教版全等三角形ppt2当堂练习当堂练习1.在下列图中找出全等三角形进行连线.?308 cm9 cm?308 cm8 cm8 cm5 cm30?8 cm5 cm308 cm?5 cm8 cm5 cm?308 cm9 cm?308 cm8 cm人教版全等三角形ppt2人教版全等三角形ppt22.如图,AB=DB,BC=BE,
9、欲证ABEDBC,则需要增加的条件是 ()A.AD B.EC C.A=C D.ABDEBC D人教版全等三角形ppt2人教版全等三角形ppt23.如图,点E、F在AC上,AD/BC,AD=CB,AE=CF.求证:AFDCEB.FABDCE证明:AD/BC,A=C,AE=CF,在AFD和和CEB中,AD=CBA=CAF=CE AFDCEB(SAS).AE+EF=CF+EF,即 AF=CE.(已知),),(已证),),(已证),),人教版全等三角形ppt2人教版全等三角形ppt24.已知:如图,AB=AC,AD是ABC的角平分线,求证:BD=CD.证明:AD是ABC的角平分线,BAD=CAD,在A
10、BD和ACD中,AB=ACBAD=CADAD=AD ABDACD(SAS).(已知),(已证),(已证),BD=CD.人教版全等三角形ppt2人教版全等三角形ppt2已知:如图,AB=AC,BD=CD,求证:BAD=CAD.变式变式1证明:BAD=CAD,在ABD和ACD中,ABDACD(SSS).AB=ACBD=CDAD=AD(已知),(公共边),(已知),人教版全等三角形ppt2人教版全等三角形ppt2已知:如图,AB=AC,BD=CD,E为AD上一点,求证:BE=CE.变式变式2证明:BAD=CAD,在ABD和ACD中,AB=ACBD=CDAD=AD(已知),(公共边),(已知),BE=
11、CE.在ABE和ACE中,AB=ACBAD=CADAE=AE(已知),(公共边),(已证),ABDACD(SSS).ABEACE(SAS).人教版全等三角形ppt2人教版全等三角形ppt25.如图,已知CA=CB,AD=BD,M,N分别是CA,CB的中点,求证:DM=DN.在ABD与CBD中证明:CA=CB (已知)AD=BD (已知)CD=CD(公共边)ACDBCD(SSS)能力提升连接CD,如图所示;A=B又M,N分别是CA,CB的中点,AM=BN人教版全等三角形ppt2人教版全等三角形ppt2在AMD与BND中AM=BN (已证)A=B (已证)AD=BD (已知)AMDBND(SAS)DM=DN.人教版全等三角形ppt2人教版全等三角形ppt2课堂小结课堂小结 边角边内容有两边及夹角对应相等的两个三角形全等(简写成“SAS”)应用为证明线段和角相等提供了新的证法注意1.已知两边,必须找“夹角”2.已知一角和这角的一夹边,必须找这角的另一夹边 人教版全等三角形ppt2人教版全等三角形ppt2