基因毒性杂质课件.ppt

上传人(卖家):晟晟文业 文档编号:5108406 上传时间:2023-02-12 格式:PPT 页数:44 大小:1.06MB
下载 相关 举报
基因毒性杂质课件.ppt_第1页
第1页 / 共44页
基因毒性杂质课件.ppt_第2页
第2页 / 共44页
基因毒性杂质课件.ppt_第3页
第3页 / 共44页
基因毒性杂质课件.ppt_第4页
第4页 / 共44页
基因毒性杂质课件.ppt_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、p欧盟公布的药品评估十大缺陷中,Top 4为基因毒性杂质。要求对杂质的潜在基因毒性杂质进行具体的讨论,并作为总体杂质讨论的一部分。p常见的基因毒性物质:p苯并芘、黄曲霉素、亚硝胺p化疗药物的不良反应是由化疗药物对正常细胞的基因毒性所致,如顺铂、卡铂、氟尿嘧啶等p氨基糖甙类抗生素:大剂量、长期使用会引起耳毒性;特别敏感患者,仅使用一次或短期使用,就出现了听力受损。研究表明,这些患者的一个基因上有一点(mtl555G)与别人不同,这使他们对氨基糖甙类药物耳毒性的易感性大大增加。目录p基因毒性杂质定义及风险p可接受风险的摄入量(TTC阈值)pEMA对基因毒性杂质的指导要求p判断是否为基因毒性杂质p决

2、策树pQ&A参考法规pEMA:2006年率先颁布基因毒性杂质限度指南,于2007年1月1日证实实施。该指南为限制活性物质中的基因毒性杂质提供了解决问题的框架和具体做法pICH:2006年,Q3A(R2)step4 vision“新原料药中的杂质”pFDA:2008年12月,Guidance for industry-Genotoxic and carcinogenic impurities in Drug substances and products:Recommended approaches.介绍了欧盟和ICH的控制方法。原料药和制剂中的基因毒性杂质生成的预防办法;上市申请和临床研究申请

3、的可接受限度。定义p基因毒性杂质:是指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质。p常用缩写 1、PGLs(potentially genotoxic impurities有潜在基因毒性的杂质)2、GTLs(genotoxic impurities基因毒性杂质)p风险:(体内)基因毒性物质在任何摄入量水平上对DNA都有潜在的破坏性,这种破坏可能导致肿瘤的产生。但不能说“不存在明显的阀值,或是任何的摄入水平都具有致癌的风险”。p新药合成、原料纯化、储存运输(与包装物接触)等过程都可能产生基因毒性杂质可接受风险的摄入量p对于那些可以与DNA进行反应的化合物,由于在较低剂量时机体自身保护

4、机制可以有效的运行,按照摄入量由高到低所造成的影响进行线性推断是很困难的。目前,对于一个给定诱变剂,很难从实验方面证实它的基因毒性存在一个阈值。p特别是对于某些化合物,它们可与非DNA靶点进行反应,或一些潜在的突变剂,在与关键靶点结合之前就失去了毒性。由于缺乏支持基因毒性阈值存在的有力证据,而使得我们很难界定一个安全的服用量。可接受风险的摄入量是否可以做个这样的试验:剂量从低到高,对基因毒性杂质影响性进行线性推断?引入一个新观点:确定一个可接受其风险的摄入量生物系统的纠错功能使试验不具备可行性。TTCp可接受其风险的摄入量一般被定义为Threshold of Toxicological Con

5、cern(TTC)。p具体含义为:1.5g/天的TTC值。p相当于人每天摄入1.5g的基因毒性杂质,被认为对于大多数药品来说是可以接受的风险(使人一生的致癌风险小于100000分之一,现实生活中人一生得癌症的概率四分之一)。按照这个阈值,可以根据预期的每日摄入量计算出活性药物中可接受的杂质水平。pTTC是一个风险管理工具,它使用的是概率方法。所以TTC不能被理解为绝对无风险的保障。TTCp意思是:假如有一个基因毒性杂质,并且我们对它的毒性大小不了解,如果它的每日摄入量低于TTC值,那么,该基因毒性杂质的致癌风险将不会高于100000分之一的概率。p某些特定情况,TTC值高于1.5g/day也是

6、可以接受的。比如药物的短期接触,即治疗某些声明预期在5年以下的某些严重疾病,或者这种杂质是一种已知物质,人类在其他方式上对它的摄入量会更高(比如在食品上)。这个需要根据实际情况再进行推算。EMA对基因毒性杂质分类pEMA对基因毒性杂质的指导原则适用于上市申请和临床研究。p一、有足够实验数据的阈值p对于有足够的(实验性的)数据来支持阈值界定的基因毒性杂质:可参考“Q3C Note for guidance on impurities:Residual Solvents”中2级溶剂的规定,计算出了一个“允许的日摄入量(PDEpermitted daily exposure)”p二、无足够实验依据的

7、阈值p没有足够的(实验性的)证据来支持阈值界定的基因毒性杂质的可接受剂量评价应该包括药学和毒理学的评价。一般来说,如果不可能避免毒性,那么药学的评价措施应该以尽可能低的控制水平为指导。药学研究p应根据现有处方和生产技术,提供生产方法的合理性。申请人应该指明涉及到的所有具有基因毒性或有致癌性的化学物质,如所用试剂、中间体、副产品等。实际生产中应尽量避免使用该类物质。p如果在合成路线、起始物料方面没有更好选择,则需要提供一个正当的理由。即物质中能引起基因毒性和致癌性的结构部分在化学合成路线上是不可避免的。p加入基因毒性杂质被认为是不可避免的,那么应该采取技术手段尽可能的减少基因毒性杂质在产品中的含

8、量,使其符合安全的需要或使其降低到一个合理的水平。对于活性中间体、反应物、以及其它化合物的化学稳定性都应进行评估。p应该有合理的分析方法去检测和量化这些杂质的残留量。毒理学研究p为一个不存在阀值的基因毒性致癌物定义一个安全的摄入量水平(零风险观点)是不可能的,并且从活性药物成分中完全的除去基因毒性杂质经常是很难做到。这样就要求我们建立一个可接受的风险水平,例如对一个低于可忽略风险的每日摄入量进行评价。p但是这些方法都需要有足够的长期致癌性研究数据。pTTC用于计算未做研究的化学物质的接触量,这些化学物质不会有明显的致癌性或者其他毒性。pTTC理论不可以应用于那些毒性数据(长期研究)充分的致癌物

9、质,也不可以做高风险毒性物质的风险评价。)/()/()(ondaygdosedayugTTCppmLimitcentrationC用药时间与毒性杂质限度含有多个基因毒性杂质的评估pEMA:结构不同的,单个杂质的限度应小于1.5ug/day.结构相似的,总的基因杂质限度定为1.5ug/day.pFDA(和EMA类似):单个杂质造成的癌症风险机率应该小于100000分之一;有相同作用机制的结构相似的杂质,其含量总和应该参考TTC值进行评估。判断是否为基因毒性杂质p通过Carcinogenic potency database(CPDB)数据库查询,数据库中现有1574种致癌物质的列表。链接http

10、:/potency.berkeley.edu/chemnameindex.html,还可查询到关于基因毒性方面研究的出版物。判断是否为基因毒性杂质p可通过文献、计算机毒理学进行评价;p常通过MDL-QSAR,MC4PC,Derek for Windows软件来评价是否具有structural alert,FDA、EMEA等官方机构也采取此类软件用来判断。pDerek for Windows数据库:可以预算某个化学药物对人类(或其他哺乳动物)是否具有毒性,在世界范围内已被许多制药公司,化学公司和学术研究机构所采用。可提供以下4种信息。n在没有实验数据的情况下,提供某个化学药物潜在的毒性信息;n建

11、立最值得关注的潜在有毒物质;n提供降低药物毒性的化学修饰方法n提供毒性预测依据 基因毒性杂质磺酸盐的风险评估pEMEA/44714/2008 p临床研究发现甲磺酸酯的DNA 烷基化作用会导致诱变效应,其中甲磺酸甲酯和甲磺酸乙酯已有这方面报导,因此有理由怀疑其它低分子量磺酸(如对甲苯磺酸)的烷基酯可能也存在着类似的毒性影响。尽管无数据表明这些酯对人的毒性影响,然后依然有上述基因毒性物质以杂质的形式存在于含磺酸酯类药物活性成分的药品中的潜在风险。p甲磺酸烷基酯,如甲磺酸甲酯(MMS)和甲磺酸乙酯(EMS),是甲磺酸与甲醇,乙醇,或其它低级醇形成的酯。特别是在以甲磺酸盐或甲磺酸酯形式存在的药物活性成

12、分中或其合成过程中用到了甲磺酸的药物活性成分中,甲磺酸烷基酯会被视为潜在杂质。p在以羟乙基磺酸盐,苯磺酸盐和对甲苯磺酸盐形式存在的药物活性成分中也会发现类似的磺酸烷基酯或芳基酯污染。需说明出现这些污染的风险。p 药物活性成分的生产是否涉及到在甲磺酸(或羟乙基磺酸,苯磺酸,对甲苯磺酸)或相应的酰氯存在的情况下,使用了低级脂肪酯,如甲醇,乙醇,正丙醇或异丙醇的情况?如果是这种情况的话,甲磺酸烷基酯或类似苯磺酯烷基酯和对甲苯磺酸烷基酯的形成可能性是否已被降至最低?是否存在有效的精制步骤?设备(特别是接触到磺酸试剂的设备)的清洗程序是否涉及到低级脂肪醇的使用?是否有适宜的质量标准和已验证的分析方法可以

13、证实药物活性成分中的磺酸烷酯或磺酸芳基酯杂质处于TTC以下?p是否检查了起始物料,如甲磺酸盐(苯磺酸盐,对甲苯磺酸盐,羟乙基磺酸),中的烷基磺酸酯或芳基磺酸酯杂质(如甲磺酸中的EMS 和MMS)及相应的酰氯?是否有这些杂质的适宜标准和验证过的方法?p当被磺酸酯或相关物质所污染了的磺酸作为起始物料用于药物活性成分时,是否能保证药物活性成分中潜在基因毒性杂质不超过其TTC值?应当要考虑各种烷基或芳基取代磺酸酯杂质的累加风险。p如在药物活性成分生产的最后一步合成步骤用到了磺酸衍生物,应将其纳入风险分析。是否对回收溶剂中磺酸酯类杂质的富集和残留进行了控制?是否能排除以甲磺酸盐,羟乙基磺酸盐,对甲苯磺酸

14、盐或苯磺酸盐形式存在的药物的活性成分,或其相关制剂,在储存过程中形成烷基或芳基磺酸酯?是否能排除以甲磺酸盐,羟乙基磺酸盐,对甲苯磺酸盐或苯磺酸盐形式存在的药物活性成分在制成最终制剂的过程中形成烷基或芳基磺酸酯,如在制粒过程中使用了醇?是否有足够灵敏的的方法可以检测到制剂中的(处于TTC水平的)这些杂质?基因毒性杂质卤代烃的风险评估p有数据表明氯乙烷、氯甲烷为基因毒性杂质,因此有理由怀疑其他低分子卤代烃类也有类似的作用。在生产中应该对其进行相应的控制。p在氨基物盐酸盐使用醇类溶剂精制的时候,基本都会产生卤代烃。p产生的条件和温度、水分、浓度、时间等有关系。p对于控制低级卤代烃的方法可以参考控制甲

15、磺酸酯的相关建议。判断是否为基因毒性杂质p高基因毒性致癌物:pN-nitroso(亚硝基)pazoxy(氧化偶氮基)paflatoxin-like compound(黄曲霉素类)p它们不能用TTC值的方法来进行评价。对这些种类的物质进行风险评价需要特殊的compound-specific 毒性数据。p可能在低于TTC值会有很强的毒性。N OR序号基因毒性杂质名称杂质限度产品名称1保护基溴化物15ppm氯沙坦钾2邻氨基甲苯7.5ppm托拉塞米3间氨基甲苯7.5ppm托拉塞米4对氨基甲苯7.5ppm托拉塞米5邻硝基甲苯7.5ppm托拉塞米6叠氮酸10ppm坎地沙坦酯7叠氮酸10ppm缬沙坦8溴代异

16、丙烷15ppm氯吡格雷氢溴酸盐9联苯溴化物3.4ppm缬沙坦10联苯溴化物四氮唑4ppm缬沙坦115-氰基苯酞25ppm西酞普兰氢溴酸盐125-氨基苯酞25ppm西酞普兰氢溴酸盐13硝基化合物25ppm西酞普兰氢溴酸盐14氨基化合物25ppm西酞普兰氢溴酸盐硫脲盐酸吡格列酮18酞嗪二酮0.04%RP-氯沙坦钾19联苯溴化物10ppmRP-氯沙坦钾20二甲海因0.05%RP-氯沙坦钾21保护基二溴物15ppmRP-氯沙坦钾22氯沙坦钾二氯物15ppmRP-氯沙坦钾23二溴二甲海因15ppm氯沙坦钾保护基溴化物24联苯溴化物10ppm氯沙坦钾25联苯溴化物四氮唑12ppm氯沙坦钾26游离肼10pp

17、mRP-氯沙坦钾27叠氮酸15ppm氯沙坦钾28四丁基溴化铵25ppm盐酸帕罗西汀29叠氮酸10ppm厄贝沙坦30对甲苯磺酸异丙酯8ppm氯沙坦钾31溴离子229ppm艾他培南32对甲苯磺酸乙酯25ppm西酞普兰38N-甲基吡咯烷酮53ppm厄贝沙坦39N,N-二甲基苯胺2ppm奎硫平40对甲苯磺酸乙酯37.5ppm奎那普利41对甲苯磺酸乙酯150ppm雷米普利42对甲苯磺酸乙酯37.5ppm依那普利43异亚丙基丙酮100ppm罗匹尼罗44间氯苯胺15ppm氢氯噻嗪45甲磺酸甲酯2ppm依普洛沙坦甲磺酸盐46甲磺酸乙酯2ppm依普洛沙坦甲磺酸盐473-硝基-2-叔丁氧甲酰氨基苯甲酸乙酯47pp

18、m坎地沙坦酯482-氰基-4-溴甲基联苯47ppm坎地沙坦酯492-(2-氰基联苯基)-4-基甲基氧基-3-硝基苯甲酸乙酯47ppm坎地沙坦酯Group1:Aromatic Groups(芳香族化合物):NAOHN-Hydroxyaryls N-羟基苯胺NAAON-Acylated aminorryls N-酰化氨基苯NO+_Aza-aryl N-oxides氮杂芳基N-氧化物NAAAminoaryls and alkylated aminoaryls芳香胺和烷基取代的芳酰胺Group 2:Alkyl and Aryl Groups(烷烃和环烷烃类化合物)AHOAldehydes 醛NAAOH

19、N-MethylolsN-亚甲基醇NAANON-Nitrosamines N-亚硝基胺ANO2Nitro compounds 硝基化合物OANH2OCarbamates氨基甲酸类OAAEpoxides环氧丙烷HNAAAziridines氮丙啶类OCO(S)Propiolactones 环丙酯NHalogen(S)N or S Mustards 卤代乙胺NNRAAAHydrazines and azo Compounds肼和偶氮化合物Group 3:Heteroatomic Groups(含杂原子化合物)EWGMichale-reactiveAcceptors迈克尔加成反应受体POORSOORA

20、lkyl Esetrs of Phosphonates or Sulfonates 膦酸酯或者磺酸酯HalogenHalo-alkenes卤代烯烃AHalogenPrimary Halides烷烃和环烷烃卤代物致癌警示结构EMEA关于基因毒性杂质的决策树基因毒性杂质有充分的证据用于评价基因毒性的阈值由实验数据得到毒性情况,如Ames检测阳性计算PDE是否为安全的吸入量控制在安全限度以下不用采取任何措施基因毒性杂质不能避免?使用其他物料取代杂质残留是否合理摄入剂量是否超过TTC?摄入1.5ug/day的量是否可行风险可以忽略或可以接受限制使用或者拒绝申请使用风险可以忽略降至合理水平否是否是否是是

21、否否是阴影部分:药品评价白色部分:毒理评价通过日服剂量和可控制的杂质浓度来计算是否超过TTC值Q&Ap如果无structural alert是否可足够说明该杂质不存在基因毒性?答:YES.无structural alert建立在很好的评价基础上,可通过DEREK,MCASE等软件,能充分说明该杂质无structural alert则可不考虑基因毒性,也不需要进一步研究和确认。Q&Ap在原料药生产过程中,对于理论推测存在或实际存在的潜在基因毒性杂质质量标准的设定依据是什么?p答:各种不同情形的潜在基因毒性杂质质量标准可以依据下面的情况来设定:p1.一个潜在的基因杂质p如果一个潜在基因毒性杂质仅仅

22、是理论上推测存在,也就是说基于理论推测存在但生产中并未实际检测到(由生产工艺开发阶段的研究证实),则不需要将其列入到原料药的质量标准中。p2.合成最后一步前,实际生成或引入了一个(潜在)基因毒性杂质p 可不将其纳入原料药质量标准中,但是必须保证该杂质在合成中间体中有合理的控制限度并且在原料药检测结果中明确其含量不超过来源于TTC或其他认可标准的30%.如不能满足这些要求,就必须在原料药质量标准中进行日常检测。p3.最后一步合成中,实际生成或引入了一个(潜在)基因毒性杂质 必须在原料药质量标准中控制该杂质。如果在原料药中该差值的含量不超过TTC或其他认可标准的30%,可实行定期检测。至少要提交6批中试批或3批大生产的数据。如果不能满足这个要求,就必须在原料药质量标准中进行日常检测。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(基因毒性杂质课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|