复合函数的导数优秀课件.ppt

上传人(卖家):晟晟文业 文档编号:5123678 上传时间:2023-02-13 格式:PPT 页数:17 大小:344.50KB
下载 相关 举报
复合函数的导数优秀课件.ppt_第1页
第1页 / 共17页
复合函数的导数优秀课件.ppt_第2页
第2页 / 共17页
复合函数的导数优秀课件.ppt_第3页
第3页 / 共17页
复合函数的导数优秀课件.ppt_第4页
第4页 / 共17页
复合函数的导数优秀课件.ppt_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、复合函数的导数复合函数的导数一、复习与引入:一、复习与引入:1.函数的导数的定义与几何意义函数的导数的定义与几何意义.2.常见函数的导数公式常见函数的导数公式.3.导数的四则运算法则导数的四则运算法则.4.例如求函数例如求函数y=(3x-2)2的导数的导数,那么我们可以把平方式那么我们可以把平方式 展开展开,利用导数的四则运算法则求导利用导数的四则运算法则求导.然后能否用其它然后能否用其它 的办法求导呢的办法求导呢?又如我们知道函数又如我们知道函数y=1/x2的导数是的导数是 =-2/x3,那么函数那么函数 y=1/(3x-2)2的导数又是什么呢的导数又是什么呢?y 为了解决上面的问题为了解决

2、上面的问题,我们需要学习新的导数的运算我们需要学习新的导数的运算法则法则,这就是这就是复合函数的导数复合函数的导数.二、新课二、新课复合函数的导数:复合函数的导数:1.复合函数的概念复合函数的概念:对于函数对于函数y=f (x),令令u=(x),若若y=f(u)是中间变量是中间变量u的函数的函数,u=(x)是自变量是自变量x的函数的函数,则称则称y=f (x)是自变量是自变量x的复合函数的复合函数.2.复合函数的导数复合函数的导数:设函数设函数 在点在点x处有导数处有导数 ,函数函数y=f(u)在在点点x的对应点的对应点u处有导数处有导数 ,则复合函数则复合函数在点在点x处也有导数处也有导数,

3、且且 或记或记)(xu )(xux )(ufyu )(xfy ;xuxuyy ).()()(xufxfx 如如:求函数求函数y=(3x-2)2的导数的导数,我们就可以有我们就可以有,令令y=u2,u=3x-2,则则 从而从而 .结果与我结果与我们利用导数的四则运算法则求得的结果完全一致们利用导数的四则运算法则求得的结果完全一致.,3,2 xuuuy1218 xuyyxux 在书写时不要把在书写时不要把 写成写成 ,两者是不完两者是不完全一样的全一样的,前者表示对自变量前者表示对自变量x的求导的求导,而后者是对中间而后者是对中间变量变量 的求导的求导.)()(xfxfx )(x 3.复合函数的求

4、导法则复合函数的求导法则:复合函数对自变量的导数复合函数对自变量的导数,等于已知函数对中间等于已知函数对中间变量的导数变量的导数,乘以中间变量对自变量的导数乘以中间变量对自变量的导数.法则可以推广到两个以上的中间变量法则可以推广到两个以上的中间变量.求复合函数的导数求复合函数的导数,关键在于分清函数的复合关关键在于分清函数的复合关系系,合理选定中间变量合理选定中间变量,明确求导过程中每次是哪个变明确求导过程中每次是哪个变量对哪个变量求导量对哪个变量求导,一般地一般地,如果所设中间变量可直接如果所设中间变量可直接求导求导,就不必再选中间变量就不必再选中间变量.复合函数的求导法则与导数的四则运算法

5、则要有复合函数的求导法则与导数的四则运算法则要有机的结合和综合的运用机的结合和综合的运用.要通过求一些初等函数的导要通过求一些初等函数的导数数,逐步掌握复合函数的求导法则逐步掌握复合函数的求导法则.三、例题选讲:三、例题选讲:例例1:求下列函数的导数求下列函数的导数:5)12()1(xy解解:设设y=u5,u=2x+1,则则:.)12(102)12(525)12()(4445 xxuxuuyyxuxux4)31(1)2(xy 解解:设设y=u-4,u=1-3x,则则:.)31(1212)3(4)31()(5554xuuxuuyyxuxux 42)sin1()3(xy 解解:设设y=u-4,u=

6、1+v2,v=sinx,则则:.2sin)sin1(4cossin2)sin1(4cos24)(sin)1()(3232324xxxxxxvuxvuvuyyxvuxvux 说明说明:在对法则的运用熟练后在对法则的运用熟练后,就不必再写中间步骤就不必再写中间步骤.例例2:求下列函数的导数求下列函数的导数:(1)y=(2x3-x+1/x)4;解解:.)116()12(4)12()12(42233333 xxxxxxxxxxxy(3)y=tan3x;解解:.secsin3cos1)cossin(3cos)sin(sincoscos)cossin(3)cossin(tan3)(tan)(tan3422

7、22322xxxxxxxxxxxxxxxxxy (2)51xxy 解解:.)1(51)1(1)1(51)1()1(51565425454xxxxxxxxxy(4)221)32(xxy ;)1)(32(1)32(212222xxxxy 解解:.161)32(142)1(21)32()1(4232222122212xxxxxxxxxxxxxy (5):y=sin2(2x+/3)法一法一:.)324sin(22)32cos()32sin(2 xxxy法二法二:,)324cos(121 xy.)324sin(2 4)324sin(021 xxy练习练习1:求下列函数的导数求下列函数的导数:bxaxyx

8、xyxxxyxycbxaxycossin)5()7643()4()3(211)2()1(232232 答案答案:2223221)21(2)2()(3)2()1(xxxycbxaxcbxaxbaxy 4227421925)76()43(135)4()925()(21)3(xxxxxxy.)2sin()2(41)2sin()2(41sin21)5(xbabaxbababxb 例例3:如果圆的半径以如果圆的半径以2cm/s的等速度增加的等速度增加,求圆半径求圆半径R=10cm时时,圆面积增加的速度圆面积增加的速度.解解:由已知知由已知知:圆半径圆半径R=R(t),且且 =2cm/s.tR 又圆面积又

9、圆面积S=R2,所以所以=40(cm)2/s.2102|2|1010RtRtRRS故圆面积增加的速度为故圆面积增加的速度为40(cm)2/s.例例4:在曲线在曲线 上求一点上求一点,使通过该点的切线平行使通过该点的切线平行于于 x轴轴,并求此切线的方程并求此切线的方程.211xy 解解:设所求点为设所求点为P(x0,y0).则由导数的几何意义知则由导数的几何意义知:切线斜率切线斜率.0,0)1(2|)11()(02200200 xxxxxfkxx把把x0=0代入曲线方程得代入曲线方程得:y0=1.所以点所以点P的坐标为的坐标为(0,1),切线方程为切线方程为y-1=0.例例5:求证双曲线求证双

10、曲线C1:x2-y2=5与椭圆与椭圆C2:4x2+9y2=72在交在交 点处的切线互相垂直点处的切线互相垂直.证证:由于曲线的图形关于坐标轴对称由于曲线的图形关于坐标轴对称,故只需证明其中一故只需证明其中一 个交点处的切线互相垂直即可个交点处的切线互相垂直即可.联立两曲线方程解得第一象限的交点为联立两曲线方程解得第一象限的交点为P(3,2),不妨不妨证明过证明过P点的两条切线互相垂直点的两条切线互相垂直.由于点由于点P在第一象限在第一象限,故由故由x2-y2=5得得,5,522 xxyxy;23|31 xyk同理由同理由4x2+9y2=72得得;94894,94822xxyxy .32|32

11、xyk因为因为k1k2=-1,所以两条切线互相垂直所以两条切线互相垂直.从而命题成立从而命题成立.例例6:设设f(x)可导可导,求下列函数的导数求下列函数的导数:(1)f(x2);(2)f();(3)f(sin2x)+f(cos2x)21 x 解解:);(2)()()1(222xf xxxfy );1(1122)1()2(2222xfxxxxxfy ).(cos)(sin2sin)sin(cos2)(coscossin2)(sin)(cos(cos)(sin(sin)(cos)(sin)3(2222222222xfxfxxxxfxxxfxxfxxfxfxfy 说明说明:对于抽象函数的求导对于抽

12、象函数的求导,一方面要从其形式是把握其一方面要从其形式是把握其 结构特征结构特征,另一方面要充分运用复合关系的求导法另一方面要充分运用复合关系的求导法 则则.我们曾经利用导数的定义证明过这样的一个结论我们曾经利用导数的定义证明过这样的一个结论:“可导的偶函数的导函数为奇函数可导的偶函数的导函数为奇函数;可导的奇函数的导函可导的奇函数的导函数为偶函数数为偶函数”.现在我们利用复合函数的现在我们利用复合函数的导数重新加以导数重新加以证明证明:证证:当当f(x)为为可导的偶函数可导的偶函数时时,则则f(-x)=f(x).两边同时对两边同时对x 求导得求导得:,故故 为为 奇函数奇函数.)()()()

13、(xfxfxfxxf )(xf 同理可证另一个命题同理可证另一个命题.我们还可以证明类似的一个结论我们还可以证明类似的一个结论:可导的周期函数可导的周期函数的导函数也是周期函数的导函数也是周期函数.证证:设设f(x)为为可导的周期函数可导的周期函数,T为其一个为其一个周期周期,则对定义则对定义 域内的每一个域内的每一个x,都有都有f(x+T)=f(x).两边同时对两边同时对x求导得求导得:即即 也是以也是以T为为周期的周期函数周期的周期函数.),()(xfTxTxf )(Txf )().(xfxf 例例7:求函数求函数 的导数的导数.11311)(2xxxxxf说明说明:这是分段函数的求导问题

14、这是分段函数的求导问题,先根据各段的函数表达先根据各段的函数表达 式式,求出在各可导求出在各可导(开开)区间的函数的导数区间的函数的导数,然后再用然后再用 定义来讨论分段点的可导性定义来讨论分段点的可导性.解解:当当x1时时,.1312)(xxxxf又又 ,故故f(x)在在x=1处连续处连续.2)1()(lim)(lim11 fxfxfxx而而;2)1(lim121lim1)1()(lim1211 xxxxfxfxxx;33lim12)1(3lim1)1()(lim111 xxxxxxfxf,11)(lim1)1()(lim11 xxfxfxfxx从而从而f(x)在在x=1处不可导处不可导.1

15、312)(xxxxf四、小结:四、小结:利用复合函数的求导法则来求导数时利用复合函数的求导法则来求导数时,选择中间变选择中间变量是复合函数求导的关键量是复合函数求导的关键.必须正确分析复合函数是由必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的哪些基本函数经过怎样的顺序复合而成的,分清其间的分清其间的复合关系复合关系.要善于把一部分量、式子暂时当作一个整体要善于把一部分量、式子暂时当作一个整体,这个暂时的整体这个暂时的整体,就是中间变量就是中间变量.求导时需要记住中间变求导时需要记住中间变量量,注意逐层求导注意逐层求导,不遗漏不遗漏,而其中特别要注意中间变量而其中特别要注意中间变量

16、的系数的系数,求导后求导后,要把中间变量转换成自变量的函数要把中间变量转换成自变量的函数.在上面的例子中涉及到了二次曲线在某点的切线在上面的例子中涉及到了二次曲线在某点的切线问题问题,但在上面的解法中回避了点在第二、三、四象限但在上面的解法中回避了点在第二、三、四象限的情况的情况.可能有同学会提出对于二次曲线在任意点的切可能有同学会提出对于二次曲线在任意点的切线怎样求的问题线怎样求的问题,由于它涉及到隐函数的求导问题由于它涉及到隐函数的求导问题.我们我们不便去过多的去研究不便去过多的去研究.下面举一个例子使同学们了解一下求一般曲线在任下面举一个例子使同学们了解一下求一般曲线在任意点的切线的方法

17、意点的切线的方法.(说明说明:这个内容不属于考查范围这个内容不属于考查范围.)例子例子:求椭圆求椭圆 在点在点 处的切线方程处的切线方程.191622 yx)323,2(解解:对椭圆方程的两边分别求导对椭圆方程的两边分别求导(在此把在此把y看成是关于看成是关于x 的函数的函数)得得:.169,02912161yxyyyx .43|2323 xyyk于是所求切线方程为于是所求切线方程为:.03843),2(43233 yxxy即即备用备用利用上述方法可得圆锥曲线的切线方程如下利用上述方法可得圆锥曲线的切线方程如下:(1)过圆过圆(x-a)2+(y-b)2=r2上一点上一点P0(x0,y0)的切线

18、方程是的切线方程是:(x0-a)(x-a)+(y0-b)(y-b)=r2.(2)过椭圆过椭圆 上一点上一点P0(x0,y0)的切线方程是的切线方程是:12222 byax.12020 byyaxx(2)过椭圆过椭圆 上一点上一点P0(x0,y0)的切线方程是的切线方程是:(4)过抛物线过抛物线y2=2px上一点上一点P0(x0,y0)的切线方程是的切线方程是:y0y =p(x+x0).12020 byyaxx(3)过双曲线过双曲线 上一点上一点P0(x0,y0)的切线方程是的切线方程是:12222 byax证证:设设x有增量有增量x,则对应的则对应的u,y分别有增量分别有增量u,y.因为因为

19、在点在点x处可导处可导,所以所以 在点在点x处连续处连续.因此当因此当x 0时时,u 0.)(xu )(xu 当当u0时时,由由 ,且且 得得:xuuyxy uyuyux 00limlim.,limlimlimlimlim00000 xuxxuxxxuyyxuuyxuuyxy 即即当当u=0时时,公式也成立公式也成立.上面的证明其实不是一个很严格的证明上面的证明其实不是一个很严格的证明,而且中间而且中间还会有不少的疑问还会有不少的疑问,譬如譬如,u=0时公式也成立时公式也成立,怎样去理怎样去理解解;x 0时与时与u 0时的极限相等问题等等时的极限相等问题等等.因此同学因此同学们只要了解公式证明

20、中的基本思想和方法即可们只要了解公式证明中的基本思想和方法即可,不必过不必过多的去深究证明的过程多的去深究证明的过程.因为事实上因为事实上,还有更严格的证明还有更严格的证明.85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。约翰B塔布 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。戴尔卡内基 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,

21、而是前面的敲打使它裂开。贾柯瑞斯 88.每个意念都是一场祈祷。詹姆士雷德非 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。柏格森 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。托尔斯泰 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。兰斯顿休斯 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。玛科斯奥雷利阿斯 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的

22、心将会平静下来。约翰纳森爱德瓦兹 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。约翰拉斯金 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。威廉班 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。萧伯纳 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。JE丁格 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。英国哲学家培根 99.真正的发现

23、之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。马塞尔普劳斯特 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。罗丹 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。托尔斯泰 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候。叔本华 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。梭罗 104.我们最容易不吝惜的是时间,而我

24、们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。威廉彭 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。戴尔卡内基 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。约翰罗伯克 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。撒母耳厄尔曼 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。卡雷贝C科尔顿 109.每个人皆有连自己都不清

25、楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。戴尔卡内基 110.每天安静地坐十五分钟倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。艾瑞克佛洛姆 111.你知道何谓沮丧-就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。坎伯 112.伟大这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。布鲁克斯 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。罗根皮沙尔史密斯 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人

26、,没有生存的资格。阿萨赫尔帕斯爵士 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。威廉海兹利特 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。凯里昂 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。BC福比斯 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。迈可汉默 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。奥古斯汀 120.无论那个时代,能量之

27、所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。史迈尔斯 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。CHK寇蒂斯 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。乔治桑 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。约翰夏尔 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。道格拉斯米尔多 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度。老子 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。怀特曼 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。G.K.Chesteron 128.医生知道的事如此的少,他们的收费却是如此的高。马克吐温 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。约翰鲁斯金

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(复合函数的导数优秀课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|