1、电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场电磁场电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析二、场的基本概念 1.什么是场?重力场、温度场、电磁场、a.从数学角度:场是给定区域内各点数值的集合,这些数值规定了该区域内一个特定量的特性。比如:T 是温度场中的物理量,T 就是温度场 b.从物理角度:场是遍及一个被界定的或无限扩展的空间内的,能够产生某种物理效应的特殊的物质,场是具有能量的。电磁场与电磁
2、波电磁场与电磁波第第1章章 矢量分析矢量分析2.场的分类 a.按物理量的性质分:标量场:描述场的物理量是标量。矢量场:描述场的物理量是矢量。b.按场量与时间的关系分:静态场:场量不随时间发生变化的场。动态场:场量随时间的变化而变化的场。动态场也称为时变场。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析第第1 1章章 矢量分析矢量分析一、矢量和标量的定义一、矢量和标量的定义二、矢量的运算法则二、矢量的运算法则三、矢量微分元:线元,面元,体元三、矢量微分元:线元,面元,体元四、标量场的梯度四、标量场的梯度六、矢量场的旋度六、矢量场的旋度五、矢量场的散度五、矢量场的散度七、重要的场论公式七
3、、重要的场论公式电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析一、矢量和标量的定义一、矢量和标量的定义1.标量:标量:只有大小,没有方向的物理量。矢量表示为:|AA a所以:一个矢量就表示成矢量的模与单位矢量的乘积。其中:为矢量的模,表示该矢量的大小。为单位矢量,表示矢量的方向,其大小为1。|A a2.矢量:矢量:不仅有大小,而且有方向的物理量。如:力 、速度 、电场 等FEv如:温度 T、长度 L 等电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析例1:在直角坐标系中,x 方向的大小为 6 的矢量如何表示?6xa图示法:6xaGNFfFxy力的图示法:FNfFFF电磁场与电
4、磁波电磁场与电磁波第第1章章 矢量分析矢量分析二、矢量的运算法则1.加法加法:矢量加法是矢量的几何和,服从平行四边形规则。a.满足交换律:ABBAb.满足结合律:CABBACBAC()()()()ABCDACBD电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析zoyx三个方向的单位矢量用 表示。,xyzaaa根据矢量加法运算:xyzAAAA,xxxyyyzzzAA aAA aAA a所以:xxyyzzAA aA aA a在直角坐标系下的矢量表示:AxAyAzA其中:电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析矢量:xxyyzzAA aA aA a模的计算:222|xyzAA
5、AA单位矢量:|yxzxyzAAAAaaaaAAAA方向角与方向余弦:,|cos,|cos,|cosAAAAAAzyxcoscoscosxyzaaa在直角坐标系中三个矢量加法运算:()()()xxxxyyyyzzzzABCABC aABC aABC azoyxAxAyAzA电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析2.减法:换成加法运算()DABAB ABCBAB逆矢量:和 的模相等,方向相反,互为逆矢量。B()BDBADABC0在直角坐标系中两矢量的减法运算:()()()xxxyyyzzzABAB aAB aAB a推论:任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。电磁
6、场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析3.3.乘法:乘法:(1)标量与矢量的乘积:0|00kkAk A akk方向不变,大小为|k|倍方向相反,大小为|k|倍(2)矢量与矢量乘积分两种定义a.标量积(点积):|cosA BABBA两矢量的点积含义:一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析在直角坐标系中,已知三个坐标轴是相互正交的,即0,0,01,1,1xyxzyzxxyyzzaaaaaaaaaaaa有两矢量点积:()()xxyyzzxxyyzzA BA aA aA aB aB aB a zzyyxxB
7、ABABA结论:两矢量点积等于对应分量的乘积之和。推论1:满足交换律推论2:满足分配律推论3:当两个非零矢量点积为零,则这两个矢量必正交。A BB A()ABCA BA C电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析推论1:不服从交换律:,A BB AA BB A 推论2:服从分配律:()AB CA BA C推论3:不服从结合律:()()AB CA BC推论4:当两个非零矢量叉积为零,则这两个矢量必平行。b.矢量积(叉积):|sincABABa含义:两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。BAca电磁场与电
8、磁波电磁场与电磁波第第1章章 矢量分析矢量分析在直角坐标系中,两矢量的叉积运算如下:xyzxyzxyzaaaABAAABBB()()x xy yz zx xy yz zA BAaAaAaBaBaBa ()()()yzzyxzxxzyxyyxzABAB aABAB aABAB a两矢量的叉积又可表示为:xyzo电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析(3)三重积:三个矢量相乘有以下几种形式:()A B C矢量,标量与矢量相乘。()ABC标量,标量三重积。矢量,矢量三重积。a.标量三重积法则:在矢量运算中,先算叉积,后算点积。定义:|sincosA BCA B C()ABC含义:标
9、量三重积结果为三矢量构成的平行六面体的体积。ABChB C 电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析注意:先后轮换次序。推论:三个非零矢量共面的条件。在直角坐标系中:()0ABC()xyzxyzxyzAAAABCBBBCCC()()xyzxxyyzzxyzxyzaaaAB CA aA aA aBBBCCCb.矢量三重积:()()()ABCB A CC A B ()()()VABCCABBCAABChB C电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析例2:12342,3223,325xyzxyzxyzxyzraaaraaaraaaraaa 求:4123rarbrcr中
10、的标量 a、b、c。解:325(2)(32)(23)xyzxyzxyzxyzaaaaaaab aaacaaa(22)(3)(23)xyzabc aabc aabc a 则:设213abc 22332235abcabcabc电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析例3:已知263xyzAaaa43xyzBaaa求:确定垂直于 、所在平面的单位矢量。AB解:已知AB所得矢量垂直于 、所在平面。ABnABaAB 263151030431xyzxyzaaaABaaa1(326)7nxyzaaaa 222|15(10)3035AB 电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析
11、三、矢量微分元:线元、面元、体元例:d,d,dFlBSV其中:和 称为微分元。d,dlSdV1.直角坐标系点点 P(x0,y0,z0)0yy(平面)(平面)o x y z0 xx(平面)(平面)0zz(平面(平面)P 直角坐标系直角坐标系 xezeye空间任一点是三个坐标面的交点:000,zzyyxx电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析x yz直角坐标系的长度元、面积元、体积元直角坐标系的长度元、面积元、体积元 od zd ydxzyeSxxdddyxeSzzdddzxeSyyddd线元:ddyylyaddddxyzlxayazaddxxlxaddzzlza面元:dd dx
12、xSy za体元:dd d dVx y zdd dyySx zadd dzzSx ya电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析2.圆柱坐标系圆柱坐标系圆柱坐标系空间任一点 是如下三个坐标面的交点:的圆柱面、包含z轴并与xz平面构成夹角为 的半平面、的平面。0000(,)Pz 0zz0电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析2.圆柱坐标系在圆柱坐标系中,坐标变量为 ,如图,做一微分体元。(,)rz线元:ddddrzlrarazadd drrSrzadd dSr zadd dzzSrradd d dVr rz面元:体元:电磁场与电磁波电磁场与电磁波第第1章章 矢量分
13、析矢量分析3.球坐标系球坐标系球坐标系空间任一点 是如下三个坐标面的交点:球心在原点、半径 的球面;顶点在原点、轴线与z轴重合且半顶角 的正圆锥面;包含z轴并与xz平面构成夹角为 半平面。0rr 000(,)P r 00电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析2dsin d drRSRa dsin d dSRRadd dSR Radddsin drlRaRaRa 线元:面元:体元:2dsin d d dVRr 球坐标系的长度元、面积元、体积元球坐标系的长度元、面积元、体积元电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢
14、量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析四、标量场的梯度四、标量场的梯度1.标量场的等值面可以看出:标量场的函数是单值函数,各等值面是互不 相交的。以温度场为例:热源等温面电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析b.梯度定义:标量场中某点梯度的大小为该点最大的方向导数,其方向为该点所在等值面的法线方向。数学表达式:dgraddnan2.
15、标量场的梯度a.方向导数:ddl空间变化率,称为方向导数。ddn为最大的方向导数。标量场的场函数为),(tzyx00dP1P2Pdndl电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析计算:dcosdndraddglddddddnlnlddnlaan在直角坐标系中:ddddxyzxyzddddxyzlxayaza所以:gradxyzaaaxyz梯度也可表示:grad 00dP1P2Pdndl电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析在柱坐标系中:在球坐标系中:在任意正交曲线坐标系中:rzaaarrzsinRaaaRRR 123112233uuuaaah uh uh u在不
16、同的坐标系中,梯度的计算公式:在直角坐标系中:xyzaaaxyz电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析五、矢量场的散度五、矢量场的散度1.1.矢线(场线):矢线(场线):在矢量场中,若一条曲线上每一点的切线方向与场矢量在该点的方向重合,则该曲线称为矢线。2.2.通量:通量:定义:如果在该矢量场中取一曲面S,通过该曲面的矢线量称为通量。表达式:dSvS若曲面为闭合曲面:dSvS+-矢量场的通量 电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析讨论:讨论:a.如果闭合曲面上的总通量0 说明穿出闭合面的通量大于穿入曲面的通量,意味着闭合面内存在正的通量源。b.如果闭合曲面上
17、的总通量0 说明穿入的通量大于穿出的通量,那么必然有一些矢线在曲面内终止了,意味着闭合面内存在负源或称沟。c.如果闭合曲面上的总通量0说明穿入的通量等于穿出的通量。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析3.3.散度:散度:a.定义:矢量场中某点的通量密度称为该点的散度。b.表达式:0ddivlimSVFSFV c.散度的计算:在直角坐标系中,如图做一封闭曲面,该封闭曲面由六个平面组成。矢量场 表示为:FxxyyzzFF aF aF a1Szyx6S5S4S3S2S123123ddddSSSSFSFSFSFS456456dddSSSFSFSFS电磁场与电磁波电磁场与电磁波第第1
18、章章 矢量分析矢量分析111d()()xxxSFSF x ay za zyxFx)(1222d()xxxSFSF x ay za 在 x方向上:计算穿过 和 面的通量为2S1S1()xF xxy z 11()()()xxxF xF xxF xxx 因为:221()d()xxSF xFSF xy zx y zx 则:在 x 方向上的总通量:1212ddxSSFFSFSx y zx 1Szyx6S5S4S3S2S电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析在 z 方向上,穿过 和 面的总通量:5S6S5656ddZSSFFSFSx y zz 整个封闭曲面的总通量:dyxzSFFFFSx
19、 y zxyz 3434ddySSFFSFSx y zy 同理:在 y方向上,穿过 和 面的总通量:3S4S电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析该闭合曲面所包围的体积:zyxV0ddivlimSVFSFV zFyFxFzyx通常散度表示为:divFF4.4.散度定理:散度定理:ddSVFSF V物理含义:穿过一封闭曲面的总通量等于矢量散度的体积分。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析散度定理是德国数学家高斯从纯数学观点导出的有关源发散的一个基本定理,又称为高斯定理。对散度定理可证明如下:设将体积 分割成 N个体积元,表示第 i个体积元右边表示在各微分体积
20、元的表面上的面积分的代数和。因相邻体积元公共表面上的面元方向总是相反的,所以在累加过程中,相互抵消,最终仅剩下包围体积 的外表面 上的面积分。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析柱坐标系中:1()1rzFF rFFrrrz球坐标系中:22(sin)()111sinsinRFFR FFRRRR132231 21 31 23123()()1uuuF h hF hhF hhFhh huuu正交曲线坐标系中:直角坐标系中:yxzFFFFxyz常用坐标系中,散度的计算公式电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电
21、磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析六、矢量场的旋度六、矢量场的旋度1.1.环量环量:在矢量场中,任意取一闭合曲线,将矢量沿该曲线积分称之为环量。dlCFl可见:环量的大小与环面的方向有关。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析 环量密度:环量是描述向量场的重要参数。某个区域中的环量不等于零,说明这个区域中的向量场表现出环绕某一点或某一区域旋转的特性。旋度则是局部地描述这一特性的方法。为了描述一个向量场在一点附近的环量,将闭合曲线收小,使它包围的面元 的面积趋于零。向量场沿着 的环量和面元的比值在趋于零时候的极限值:就是的环量密度(或称为环量强度)。电磁场与
22、电磁波电磁场与电磁波第第1章章 矢量分析矢量分析定义:一矢量其大小等于某点最大环量密度,方向为该环量密度的法线方向,那么该矢量称为该点矢量场的旋度。表达式:max01rotlimd nlSFaFlS 2.2.旋度旋度:电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析旋度计算:以直角坐标系为例,一旋度矢量可表示为:()()()xxyyzzFFaFaFa 10d()limlxSxFlFS xxyyzzFF aF aF a场矢量:1dddddabbccddaabbccddalllllFlFlFlFlFl其中:为x 方向的环量密度。()xFxzy旋度可用符号表示:rotFF dcba电磁场与电
23、磁波电磁场与电磁波第第1章章 矢量分析矢量分析dd()abzlza1dzylFlFzFy ()()yzzyFFFyzFzyyz ()yzxFFSyz其中:ddbcylyaddcdzlzadd()daylya可得:()yzxFFFyz()xzyFFFzx()yxzFFFxy同理:xzydcba所以:10d()limlxSxFlFS yyxxzzxyzFFFFFFFaaayzzxxy旋度公式:电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析为了便于记忆,将旋度的计算公式写成下列形式:xyzxyzaaaFxyzFFF 类似地,可以推导出在广义正交坐标系中旋度的计算公式:对于柱坐标、球坐标,已
24、知其拉梅系数,代入公式即可写出旋度的计算公式。1231231231 231231231uuuuuuhah ah aFhh huuuh Fh Fh F电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析3.3.斯托克斯定理:斯托克斯定理:物理含义:物理含义:一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲一个矢量场旋度的面积分等于该矢量沿此曲面周界的曲线积分。线积分。()ddSlFSFl电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析电磁场与电磁波电磁场与电磁波第第1章章
25、矢量分析矢量分析七、重要的场论公式七、重要的场论公式(1)()0 1.1.两个零恒等式两个零恒等式 任何标量场梯度的旋度恒为零。(2)()0F 任何矢量场的旋度的散度恒为零。电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析在圆柱坐标系中:2222221)(1zrrrrr在球坐标系中:22222222111()(sin)sinsinRRRRRR在广义正交曲线坐标系中:2231 31 21 231112223331()()()h hhhhhhh huhuuhuuhu2.2.拉普拉斯算子拉普拉斯算子 2()在直角坐标系中:2222222zyx电磁场与电磁波电磁场与电磁波第第1章章 矢量分析矢量分析)()AAA AAA)()()()()()A BABBA ABBA ()A BBA AB ()()()A BAB BABAAB 3.3.常用的矢量恒等式常用的矢量恒等式