1、导入新课讲授新课当堂练习课堂小结20.1.2 中位数和众数第二十章 数据的分析第1课时 中位数和众数情境引入学习目标1.理解中位数、众数的概念,会求一组数据的中位数、众数.(重点)2.掌握中位数、众数的作用,会用中位数、众数分析实际问题.(难点)你们公司员工收入到底怎样呢?我这里报酬不错,月平均工资是6000元,你在这儿好好干!经理应聘者小王第二天,小王上班了.职员C我的工资是4000元,在公司算中等收入我们好几个人工资都是3000元职员D导入新课导入新课 经理应聘者小王小王在公司工作了一周后你欺骗了我,我已问过其他职员,没有一个职员的工资超过6000元.平均工资确实是每月6000元,你看看公
2、司的工资报表.讲授新课讲授新课中位数一月收入/元45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000人数111361111问题1 下表是某公司员工月收入的资料 (1)计算这个公司员工月收入的平均数;平均数远远大于绝大多数人(22人)的实际月工资,绝大多数人“被平均”(2)如果用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?6276“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?问题2 该公司员工的中等收入水平大概是多少元?你是怎样确定的?一半人月工资高于该数值,另一半人月工资
3、低于该数值;中等水平的含义是中位数月收入/元45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000人数111361111 将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数知识要点练一练 先排序、看奇偶例1 在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少?解:(
4、1)先将样本数据按照由小到大的顺序排列:_这组数据的中位数为_的平均数,即_.答:样本数据的中位数是_.124129136140145146148154158165175180146 1481472处于中间的两个数146,148147(2)一名选手的成绩是142min,他的成绩如何?(2)由(1)知样本数据的中位数为_,它的意义是:这次马拉松比赛中,大约有_ _选手的成绩快于147min,有_选手的成绩慢于147min.这名选手的成绩是142min,快于中位数_,因此可以推测他的成绩比_选手的成绩好.147有一半有一半一半一半147min一半以上一半以上2.如果一组数据中有极端数据,中位数能比
5、平均数更合理地反映该组数据的整体水平总结归纳1.中位数是一个位置代表值(中间数),它是唯一的.3.如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半,反映一组数据的中间水平中位数的特征及意义:数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据图表,全班每位同学答对的题数的中位数是_.答对题数学生数94人20人18人8人做一做例2 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数.解:10,10,x,8的中位数与平均数相等 (10+x)2(10+10+x+8)4 x8 (10+x)29 这组数据的中位数是
6、9.分析:由题意可知最中间两位数是10,x,列方程求解即可.做一做一组数据18,22,15,13,x,7,它的中位数是16,则x的值是_.17分析:这组数据有6个,中位数是中间两个数的平均数.因为71315161822,所以中间两个数必须是15,x,故(15+x)2=17,即x=17.众数二思考:如果小张是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?如果小李想到该公司应聘一名普通员工岗位,他最关注的是什么信息?月收入/元45 000 18 000 10 000 5 500 5 000 3 400 3 000 1 000人数111361111注意:(1)一组数据的众数一定出现在这
7、组数据中.(2)一组数据的众数可能不止一个.如1,1,2,3,3,5中众数是1和3.(3)众数是一组数据中出现次数最多的数据而不是数据出现的次数,如1,1,1,2,2,5中众数是1而不是3.一组数据中出现次数最多的数据称为这组数据的众数.知识要点例3 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议码?尺码/厘米2222.52323.52424.525销售量/双12511731解:由上表看出,在鞋的尺码组成的数据中,_是这组数据的众数,它的意义是:_厘米的鞋销量最大.因此可以建议鞋店多进_厘米的鞋.思考:你还能为鞋店进货提出哪些建议
8、?23.523.523.5尺码/厘米2222.52323.52424.525销售量/双12511731做一做下面的扇形图描述了某种运动服的S号、M号、L号、XL号、XXL号在一家商场的销售情况.请你为这家商场提出进货建议.S16%8%24%30%22%MLXLXXL解:因为众数是M号,所以建议商场多进M号的运动服,其次是进S号,再其次进L号,少进XXL号的运动服.1数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A4.5、5 B5、4.5 C5、4 D5、5 2要调查多数同学们喜欢看的电视节目,应关注的是哪个数据的代表()A平均数 B中位数 C众数 3在演讲比赛中,你想知道自
9、己在所有选手中处于什么水平,应该选择哪个数据的代表()A平均数 B中位数 C众数 当堂练习当堂练习BCB4.为了了解开展“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务的时间(小时)011.522.533.54人数226121343(1)填写图表格中未完成的部分;(2)该班学生每周做家务的平均时间是 .2.44(3)这组数据的中位数是 ,众数是 .2.5385.某校男子足球队的年龄分布如下面的条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.人数 13 14 15
10、 16 17 18年龄/岁0246810分析:总的年龄除以总的人数就是平均数,出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.解:这些队员年龄的平均数为:(132+146+158+163+172+181)22=15,队员年龄的众数为15,队员年龄的中位数是15.意义:由平均数是15可说明队员们的平均年龄为15;由众数是15可说明大多数队员的年龄为15岁;由中位数是15可说明有一半队员的年龄大于或等于15岁,有一半队员的年龄小于或等于15岁.人数 131415161
11、718年龄/岁0246810课堂小结课堂小结中位数和众数中位数:中间的一个数,或中间的两个数的平均数.众数:出现次数最多的数.平均数、中位数、众数的特征:平均数是最常用的指标,它表示“一般水平”,中位数表示“中等水平”,众数表示“多数水平”.17.2 勾股定理的逆定理第十七章 勾股定理导入新课讲授新课当堂练习课堂小结第1课时 勾股定理的逆定理学习目标1.掌握勾股定理逆定理的概念并理解互逆命题、定 理的概念、关系及勾股数.(重点)2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)导入新课导入新课B C A 问题1 勾股定理的内容是什么?如果直角三角形的两条直
12、角边长分别为a,b,斜边为c,那么a2+b2=c2.bca问题2 求以线段a、b为直角边的直角三角形的斜边c的长:a3,b4;a2.5,b6;a4,b7.5.c=5c=6.5c=8.5复习引入思考 以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?同学们你们知道古埃及人用什么方法得到直角的吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.情景引入思考:从前面我们知道古埃及人认为一个三角形三边长分别为3
13、,4,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?大禹治水相传,我国古代的大禹在治水时也用了类似的方法确定直角.讲授新课讲授新课勾股定理的逆定理一下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?0180150120906030724255131217815是下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题2 这三组数在数量关系上有什么相同点?5,12,13满足52+122=132,7,24,25
14、满足72+242=252,8,15,17满足82+152=172.问题3 古埃及人用来画直角的三边满足这个等式吗?32+42=52,满足.a2+b2=c2我觉得这个猜想不准确,因为测量结果可能有误差.我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.问题3 据此你有什么猜想呢?由上面几个例子,我们猜想:命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.ABC ABC?C是直角ABC是直角三角形ABCa b c 已知:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形构造两直角边分别为a,b的RtABC证一证:证明:作
15、RtABC,使C=90,AC=b,BC=a,ABC ABC(SSS),C=C=90 ,即ABC是直角三角形.则22222ABBCACab .222abc,22.A BcA Bc ,ABCA B C在和中A CACB CBCA BAB ,C B aAbcACaBbc勾股定理的逆定理:如果三角形的三边长a、b、c满足 a2+b2=c2那么这个三角形是直角三角形.ACBabc 勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形,最长边所对应的角为直角.特别说明:归纳总结 例1 下面以a,b,c为边长的三角形是不是直角三
16、角形?如果是,那么哪一个角是直角?(1)a=15 ,b=8 ,c=17;解:(1)152+82=289,172=289,152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且C是直角.(2)a=13,b=14 ,c=15.(2)132+142=365,152=225,132+142152,不符合勾股定理的逆定理,这个三角形不是直角三角形.根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳【变式题1】若ABC的三边a,b,c满足 a:b:c=3:4:5,是判断ABC的形状.解:设a=3k,b=4k,c=5k(k0),(3k
17、)2+(4k)2=25k2,(5k)2=25k2,(3k)2+(4k)2=(5k)2,ABC是直角三角形,且C是直角.已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.归纳【变式题2】(1)若ABC的三边a,b,c,且a+b=4,ab=1,c=,试说明ABC是直角三角形.14解:a+b=4,ab=1,a2+b2=(a+b)2-2ab=16-2=14.又c2=14,a2+b2=c2,ABC是直角三角形.(2)若ABC的三边 a,b,c 满足a2+b2+c2+50=6
18、a+8b+10c.试判断ABC的形状.解:a2+b2+c2+50=6a+8b+10c,a26a+9+b28b+16+c210c+25=0.即(a3)+(b4)+(c5)=0.a=3,b=4,c=5,即 a2+b2=c2.ABC是直角三角形.例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE CB,试判断AF与EF的位置关系,并说明理由 解:AFEF.理由如下:设正方形的边长为4a,则ECa,BE3a,CFDF2a.在RtABE中,得AE2AB2BE216a29a225a2.在RtCEF中,得EF2CE2CF2a24a25a2.在RtADF中,得AF2AD2DF216a24a
19、220a2.在AEF中,AE2EF2AF2,AEF为直角三角形,且AE为斜边AFE90,即AFEF.14练一练1.下列各组线段中,能构成直角三角形的是()A2,3,4 B3,4,6 C5,12,13 D4,6,7 C2.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是 ()A4 B3 C2.5 D2.4D3.若ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则ABC是_.等腰三角形或直角三角形如果三角形的三边长a,b,c满足a2+b2=c2 那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.勾股数二概念学习常见勾股数:3,4,5;5,12,
20、13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.勾股数拓展性质:一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.下列各组数是勾股数的是 ()A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132A 方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.练一练命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.命题2 如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.前面我们学习了两
21、个命题,分别为:互逆命题与互逆定理三命题1:直角三角形a2+b2=c2命题2:直角三角形a2+b2=c2题设结论 它们是题设和结论正好相反的两个命题.问题1 两个命题的条件和结论分别是什么?问题2 两个命题的条件和结论有何联系?一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.归纳总结说出下列命题的逆命题,这些逆命题成立吗?(1)两条直线平行,内错角相等;(2)如果两个实数相
22、等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)在角的内部,到角的两边距离相等的点在角的平分线上.内错角相等,两条直线平行.如果两个实数的绝对值相等,那么它们相等.对应角相等的三角形全等.在角平分线上的点到角的两边距离相等.成立不成立不成立成立练一练当堂练习当堂练习1.下列各组数是勾股数的是 ()A.3,4,7 B.5,12,13 C.1.5,2,2.5 D.1,3,52.将直角三角形的三边长扩大同样的倍数,则得到的三角形 ()A.是直角三角形 B.可能是锐角三角形C.可能是钝角三角形 D.不可能是直角三角形BA3.在ABC中,A,B,C的对边分别a,b,c.若C-B=A,则AB
23、C是直角三角形;若c2=b2-a2,则ABC是直角三角形,且C=90;若(c+a)(c-a)=b2,则ABC是直角三角形;若A:B:C=5:2:3,则ABC是直角三角形.以上命题中的假命题个数是()A.1个 B.2个 C.3个 D.4个A 4.已知a、b、c是ABC三边的长,且满足关系式 ,则ABC的形状是 _2220cabca+-+-=等腰直角三角形5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_cm;12(2)“等腰三角形两底角相等”的逆定理为_有两个角相等的三角形是等腰三角形6.已知ABC,AB=n-1,BC=2n,AC=n+1(n为大于1的正
24、整数).试问ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.解:AB+BC=(n-1)+(2n)=n4-2n+1+4n =n4+2n+1 =(n+1)=AC,ABC直角三角形,边AC所对的角是直角.7.如图,在四边形ABCD中,AB=8,BC=6,AC=10,AD=CD=,求四边形ABCD 的面积.5 2222268100ABBC解:,+=+=2222(5 2)(5 2)100ADDC,+=+=2100AC,=ABC是直角三角形且B是直角.222ADDCAC,+=ADC是直角三角形且 D是直角,S 四边形 ABCD=11685 25 249.22创+创=222ABBCAC,+=
25、课堂小结课堂小结勾股定理的逆定理内 容作用从三边数量关系判定 一 个 三 角 形 是否是直角形三角形.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.注意最长边不一定是c,C也不一定是直角.勾股数一定是正整数17.2 勾股定理的逆定理第十七章 勾股定理导入新课讲授新课当堂练习课堂小结第1课时 勾股定理的逆定理学习目标1.掌握勾股定理逆定理的概念并理解互逆命题、定 理的概念、关系及勾股数.(重点)2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)导入新课导入新课B C A 问题1 勾股定理的内容是什么?如果直角三角形的两条直角边
26、长分别为a,b,斜边为c,那么a2+b2=c2.bca问题2 求以线段a、b为直角边的直角三角形的斜边c的长:a3,b4;a2.5,b6;a4,b7.5.c=5c=6.5c=8.5复习引入思考 以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?同学们你们知道古埃及人用什么方法得到直角的吗?(1)(2)(3)(4)(5)(6)(7)(8)(13)(12)(11)(10)(9)打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.情景引入思考:从前面我们知道古埃及人认为一个三角形三边长分别为3,4
27、,5,那么这个三角形为直角三角形.按照这种做法真能得到一个直角三角形吗?大禹治水相传,我国古代的大禹在治水时也用了类似的方法确定直角.讲授新课讲授新课勾股定理的逆定理一下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?0180150120906030724255131217815是下面有三组数分别是一个三角形的三边长a,b,c:5,12,13;7,24,25;8,15,17.问题2 这三组数在数量关系上有什么相同点?5,12,13满足52+122=132,7,24,25满足
28、72+242=252,8,15,17满足82+152=172.问题3 古埃及人用来画直角的三边满足这个等式吗?32+42=52,满足.a2+b2=c2我觉得这个猜想不准确,因为测量结果可能有误差.我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.问题3 据此你有什么猜想呢?由上面几个例子,我们猜想:命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.ABC ABC?C是直角ABC是直角三角形ABCa b c 已知:如图,ABC的三边长a,b,c,满足a2+b2=c2 求证:ABC是直角三角形构造两直角边分别为a,b的RtABC证一证:证明:作Rt
29、ABC,使C=90,AC=b,BC=a,ABC ABC(SSS),C=C=90 ,即ABC是直角三角形.则22222ABBCACab .222abc,22.A BcA Bc ,ABCA B C在和中A CACB CBCA BAB ,C B aAbcACaBbc勾股定理的逆定理:如果三角形的三边长a、b、c满足 a2+b2=c2那么这个三角形是直角三角形.ACBabc 勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形,最长边所对应的角为直角.特别说明:归纳总结 例1 下面以a,b,c为边长的三角形是不是直角三角形
30、?如果是,那么哪一个角是直角?(1)a=15 ,b=8 ,c=17;解:(1)152+82=289,172=289,152+82=172,根据勾股定理的逆定理,这个三角形是直角三角形,且C是直角.(2)a=13,b=14 ,c=15.(2)132+142=365,152=225,132+142152,不符合勾股定理的逆定理,这个三角形不是直角三角形.根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.归纳【变式题1】若ABC的三边a,b,c满足 a:b:c=3:4:5,是判断ABC的形状.解:设a=3k,b=4k,c=5k(k0),(3k)2
31、+(4k)2=25k2,(5k)2=25k2,(3k)2+(4k)2=(5k)2,ABC是直角三角形,且C是直角.已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.归纳【变式题2】(1)若ABC的三边a,b,c,且a+b=4,ab=1,c=,试说明ABC是直角三角形.14解:a+b=4,ab=1,a2+b2=(a+b)2-2ab=16-2=14.又c2=14,a2+b2=c2,ABC是直角三角形.(2)若ABC的三边 a,b,c 满足a2+b2+c2+50=6a+
32、8b+10c.试判断ABC的形状.解:a2+b2+c2+50=6a+8b+10c,a26a+9+b28b+16+c210c+25=0.即(a3)+(b4)+(c5)=0.a=3,b=4,c=5,即 a2+b2=c2.ABC是直角三角形.例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE CB,试判断AF与EF的位置关系,并说明理由 解:AFEF.理由如下:设正方形的边长为4a,则ECa,BE3a,CFDF2a.在RtABE中,得AE2AB2BE216a29a225a2.在RtCEF中,得EF2CE2CF2a24a25a2.在RtADF中,得AF2AD2DF216a24a22
33、0a2.在AEF中,AE2EF2AF2,AEF为直角三角形,且AE为斜边AFE90,即AFEF.14练一练1.下列各组线段中,能构成直角三角形的是()A2,3,4 B3,4,6 C5,12,13 D4,6,7 C2.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是 ()A4 B3 C2.5 D2.4D3.若ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则ABC是_.等腰三角形或直角三角形如果三角形的三边长a,b,c满足a2+b2=c2 那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.勾股数二概念学习常见勾股数:3,4,5;5,12,13
34、;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.勾股数拓展性质:一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.下列各组数是勾股数的是 ()A.6,8,10 B.7,8,9 C.0.3,0.4,0.5 D.52,122,132A 方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.练一练命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.命题2 如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.前面我们学习了两个命
35、题,分别为:互逆命题与互逆定理三命题1:直角三角形a2+b2=c2命题2:直角三角形a2+b2=c2题设结论 它们是题设和结论正好相反的两个命题.问题1 两个命题的条件和结论分别是什么?问题2 两个命题的条件和结论有何联系?一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.归纳总结说出下列命题的逆命题,这些逆命题成立吗?(1)两条直线平行,内错角相等;(2)如果两个实数相等,
36、那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)在角的内部,到角的两边距离相等的点在角的平分线上.内错角相等,两条直线平行.如果两个实数的绝对值相等,那么它们相等.对应角相等的三角形全等.在角平分线上的点到角的两边距离相等.成立不成立不成立成立练一练当堂练习当堂练习1.下列各组数是勾股数的是 ()A.3,4,7 B.5,12,13 C.1.5,2,2.5 D.1,3,52.将直角三角形的三边长扩大同样的倍数,则得到的三角形 ()A.是直角三角形 B.可能是锐角三角形C.可能是钝角三角形 D.不可能是直角三角形BA3.在ABC中,A,B,C的对边分别a,b,c.若C-B=A,则ABC是
37、直角三角形;若c2=b2-a2,则ABC是直角三角形,且C=90;若(c+a)(c-a)=b2,则ABC是直角三角形;若A:B:C=5:2:3,则ABC是直角三角形.以上命题中的假命题个数是()A.1个 B.2个 C.3个 D.4个A 4.已知a、b、c是ABC三边的长,且满足关系式 ,则ABC的形状是 _2220cabca+-+-=等腰直角三角形5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_cm;12(2)“等腰三角形两底角相等”的逆定理为_有两个角相等的三角形是等腰三角形6.已知ABC,AB=n-1,BC=2n,AC=n+1(n为大于1的正整数
38、).试问ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.解:AB+BC=(n-1)+(2n)=n4-2n+1+4n =n4+2n+1 =(n+1)=AC,ABC直角三角形,边AC所对的角是直角.7.如图,在四边形ABCD中,AB=8,BC=6,AC=10,AD=CD=,求四边形ABCD 的面积.5 2222268100ABBC解:,+=+=2222(5 2)(5 2)100ADDC,+=+=2100AC,=ABC是直角三角形且B是直角.222ADDCAC,+=ADC是直角三角形且 D是直角,S 四边形 ABCD=11685 25 249.22创+创=222ABBCAC,+=课堂
39、小结课堂小结勾股定理的逆定理内 容作用从三边数量关系判定 一 个 三 角 形 是否是直角形三角形.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.注意最长边不一定是c,C也不一定是直角.勾股数一定是正整数小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他
40、们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考
41、成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心