直线和圆的位置关系切线的性质课件.ppt

上传人(卖家):晟晟文业 文档编号:5166483 上传时间:2023-02-15 格式:PPT 页数:14 大小:1,013.01KB
下载 相关 举报
直线和圆的位置关系切线的性质课件.ppt_第1页
第1页 / 共14页
直线和圆的位置关系切线的性质课件.ppt_第2页
第2页 / 共14页
直线和圆的位置关系切线的性质课件.ppt_第3页
第3页 / 共14页
直线和圆的位置关系切线的性质课件.ppt_第4页
第4页 / 共14页
直线和圆的位置关系切线的性质课件.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、1.1.判定一条直线是圆的切线的判定一条直线是圆的切线的三种三种方法:方法:直线直线l 与圆有与圆有唯一公共点唯一公共点与圆心的距离与圆心的距离等于等于圆的圆的半径半径经过半径经过半径外端外端且且垂直垂直这条半径这条半径l是圆的切线是圆的切线2.2.常用的添辅助线方法?常用的添辅助线方法?直线与圆的公共点已知时,作出过公共点的半径,再证半直线与圆的公共点已知时,作出过公共点的半径,再证半径垂直于该直线。(径垂直于该直线。(有交点,连半径,证垂直有交点,连半径,证垂直)直线与圆的公共点不确定时,过圆心作直线的垂线段,再直线与圆的公共点不确定时,过圆心作直线的垂线段,再证明这条垂线段等于圆的半径。

2、(证明这条垂线段等于圆的半径。(无交点,作垂直,证半径无交点,作垂直,证半径)l是圆的切线是圆的切线l是圆的切线是圆的切线 例例1 1 如图,已知:直线如图,已知:直线ABAB经过经过O O上的点上的点C C,并且并且OA=OBOA=OB,CA=CBCA=CB。求证:直线求证:直线ABAB是是O O的切线。的切线。OBAC 分析:分析:由于由于ABAB过过O O上的点上的点C C,所以连接,所以连接OCOC,只要证明只要证明ABOCABOC即可。即可。规范板书已知:直线已知:直线AB经过经过 O上的点上的点C,并且,并且OA=OB,CA=CB。求证:直线求证:直线AB是是 O的切线。的切线。证

3、明:连结证明:连结OC(OC(如图如图)。OA OAOB,CAOB,CACB,CB,ABOC(ABOC(三线合一三线合一)OC OC是是O O的半径的半径 AB AB是是O O的切线。的切线。例例2 2 如图,已知:如图,已知:O O为为BACBAC平分线上一平分线上一点,点,ODABODAB于于D,D,以以O O为圆心,为圆心,ODOD为半径作为半径作O O。求证:求证:O O与与ACAC相切。相切。OABCED规范板书证明:过证明:过O O作作OEACOEAC于于E E。AO AO平分平分BACBAC,ODAB ODAB于点于点D D OE OEODOD OD OD是是O O的半径的半径

4、OE OE也是半径也是半径 AC AC是是O O的切线。的切线。OlM反证法反证法这与这与“直线直线l是圆是圆O的切线的切线”矛盾矛盾.切线的性质定理切线的性质定理:圆的切线垂直于经过切点的半径圆的切线垂直于经过切点的半径证明:证明:假设假设l与与OA不垂直不垂直,作作OM l于于M因因“垂线段最短垂线段最短”,故故OAOM,即圆心到直线的距离小于半径即圆心到直线的距离小于半径.A故直线故直线l与圆与圆O一定垂直一定垂直.【切线的性质定理切线的性质定理】1 1、如图、如图,O,O切切PBPB于点于点B,PB=4,PA=2,B,PB=4,PA=2,则则OO的半径多少?的半径多少?AOBP 注:注

5、:已知切线、切点,则连接半径,应已知切线、切点,则连接半径,应用切线的性质定理得到垂直关系用切线的性质定理得到垂直关系,从而应用,从而应用勾股定理计算。勾股定理计算。2 2、如图如图.AB.AB为为OO的直径的直径,C,C为为OO上一上一点点,AD,AD和和 过过C C点的切线互相垂直点的切线互相垂直,垂足为垂足为 D,D,求证求证:AC:AC平分平分DAB.DAB.ABOCD证明证明:连接连接OC,OCCD.又又ADCD,OC/AD.OC=OA.CAO=ACO.CAD=CAO.故故AC平分平分DAB.CD是是 O的切线的切线,由此得由此得 ACO=CAD.过半径外端过半径外端;垂直于这条半径垂直于这条半径.切线切线圆的切线圆的切线;过切点的半径过切点的半径.切线垂直于半径切线垂直于半径切线判定定理:切线判定定理:切线性质定理:切线性质定理:OAl

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(直线和圆的位置关系切线的性质课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|