1、半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)1上节课主要内容上节课主要内容1、掺杂工艺一般分为、掺杂工艺一般分为哪两步?结深?薄层电哪两步?结深?薄层电阻?固溶度?阻?固溶度?2、两种特殊条件下的费、两种特殊条件下的费克第二定律的解及其特克第二定律的解及其特点?特征扩散长度?点?特征扩散长度?预淀积退火。预淀积:气固相预淀积预淀积退火。预淀积:气固相预淀积扩散或离子注入。扩散或离子注入。Rs:表面为正方形的:表面为正方形的半导体薄层(结深),在平行电流方向半导体薄层(结深),在平行电流方向所呈现的电阻,单位为所呈现的电阻,单位为 /,反映,反映扩散扩散入硅内部的净杂质入硅内部的净杂
2、质总量。总量。固溶度:在平固溶度:在平衡条件下,杂质能溶解在硅中而不发生衡条件下,杂质能溶解在硅中而不发生反应形成分凝相的最大浓度。反应形成分凝相的最大浓度。表面浓度恒定,余误差函数分布表面浓度恒定,余误差函数分布(erfc)。随时间变化:杂质总量增加,扩散深度随时间变化:杂质总量增加,扩散深度增加增加杂质总量恒定,高斯函数杂质总量恒定,高斯函数/正态分布正态分布(Gaussian)。随时间变化:表面浓度下降,随时间变化:表面浓度下降,结深增加结深增加DtxCtxCs2erfc,DtxDtQtxCT4exp,2半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)2如何判断对费克定律应用何种
3、解析解?如何判断对费克定律应用何种解析解?当表面浓度为固溶度时,意味着该分布是余误差分布当表面浓度为固溶度时,意味着该分布是余误差分布当表面浓度较低时,意味着该分布是经过长时间的推进当表面浓度较低时,意味着该分布是经过长时间的推进过程,是高斯分布。过程,是高斯分布。费克定律解析解的应用费克定律解析解的应用本征扩散时,理想边界条件下的解。实际情况需要修正,如:本征扩散时,理想边界条件下的解。实际情况需要修正,如:高浓度高浓度电场效应电场效应杂质分凝杂质分凝点缺陷点缺陷半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)3例题:例题:CMOS中的中的p阱的形成。要求表面浓度阱的形成。要求表面浓
4、度Cs=4x1017 cm-3,结深结深xj=3 m mm。已知衬底浓度为已知衬底浓度为CB=11015 cm3。设计该工艺过程。设计该工艺过程。离子注入离子注入退火退火半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)4假定推进退火获得的结深,则根据假定推进退火获得的结深,则根据该数值为推进扩散的该数值为推进扩散的“热预算热预算”。DtxDtQtxC4exp,2291517242cm107.310104ln4103ln4 BsjCCxDtDtxCCjsB4exp2解:解:1)假设离子注入)假设离子注入+推进退火推进退火半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)52)推进退
5、火的时间)推进退火的时间假定在假定在1100 C进行推进退火,则扩散系数进行推进退火,则扩散系数D=1.510-13 cm2/s3)所需离子注入的杂质剂量)所需离子注入的杂质剂量可以推算出可以推算出该剂量可以很方便地用离子注入实该剂量可以很方便地用离子注入实现在非常薄的范围内的杂质预淀积现在非常薄的范围内的杂质预淀积hours8.6seccm105.1cm107.321329indrivet213917cm103.4107.3104DtCQs半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)64)假如采用)假如采用950 C热扩散预淀积而非离子注入热扩散预淀积而非离子注入预淀积时间为预淀
6、积时间为此时,此时,B的固溶度为的固溶度为2.51020/cm3,扩散系数,扩散系数D=4.210-15 cm2/s该预淀积为余误差分布,则该预淀积为余误差分布,则但是预淀积时间过短,工艺无法实现。应改为离子注入!但是预淀积时间过短,工艺无法实现。应改为离子注入!DtCQs2sec5.5102.4105.22103.41522013deppre t即使即使9indrive14deppre107.3103.2DtDt半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)7影响杂质分布的其他因素影响杂质分布的其他因素Ficks Laws:Only valid for diffusion unde
7、r special conditionsSimplification!半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)81、电场效应(、电场效应(Field effect)非本征扩散非本征扩散电场的产生:由于载流子电场的产生:由于载流子的迁移率高于杂质离子,的迁移率高于杂质离子,二者之间形成内建电场。二者之间形成内建电场。载流子领先于杂质离子,载流子领先于杂质离子,直到内建电场的漂移流与直到内建电场的漂移流与扩散流达到动态平衡。扩散流达到动态平衡。如果如果NA、NDni(扩散温度下)时,非本征扩散效应(扩散温度下)时,非本征扩散效应半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下
8、)9所以,杂质流由两部分组成:所以,杂质流由两部分组成:内建电场内建电场以以n型掺杂为例型掺杂为例,ECxCDFFFdriftdiffusiontotalm m DkTqmiinnCxDCnnxDCxCDFlnlnxinnqkTln半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)10DAiADNNCnnpnNpN2由由 并并假定杂质全部离化假定杂质全部离化,有,有2422CnCni场助扩散方程:场助扩散方程:xChDF其中其中h为扩散系数的电场增强因子:为扩散系数的电场增强因子:2241inCCh当掺杂浓度远大于本征载流子浓度时,当掺杂浓度远大于本征载流子浓度时,h 接近接近 2。半导
9、体制造工艺基础第六章第六章 扩散原理扩散原理(下下)11电场效应对于低浓度本体杂质分布影响更大电场效应对于低浓度本体杂质分布影响更大半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)122、扩散系数与杂质浓度的关系、扩散系数与杂质浓度的关系在杂质浓度很高在杂质浓度很高时,扩散系数不时,扩散系数不再是常数,而与再是常数,而与掺杂浓度相关掺杂浓度相关扩散方程改写为:扩散方程改写为:箱型箱型xCDxtCeffA半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)1320iieffAnnDnnDDD20iieffAnpDnpDDDp型掺杂型掺杂n型掺杂型掺杂、族元素在硅中的扩散运动是建立在杂
10、质与空位相互作用族元素在硅中的扩散运动是建立在杂质与空位相互作用的基础上的,掺入的施主或受主杂质诱导出了大量荷电态空位,的基础上的,掺入的施主或受主杂质诱导出了大量荷电态空位,从而增强了扩散系数。从而增强了扩散系数。半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)14非本征掺杂扩散系数比本征掺非本征掺杂扩散系数比本征掺杂扩散系数杂扩散系数高一个数量级高一个数量级!由于非本征掺杂的扩散系数在由于非本征掺杂的扩散系数在掺杂边缘迅速衰减,因而出现掺杂边缘迅速衰减,因而出现边缘陡峭的边缘陡峭的“箱型箱型”分布。分布。sec/cm1066.1214AsD箱型箱型1000 C下,非本征扩散系数:下
11、,非本征扩散系数:半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)15 对于对于B,P来说,在氧化过程中,其扩散系数增加。来说,在氧化过程中,其扩散系数增加。对对Sb来说,扩散系数减小。来说,扩散系数减小。双扩散机制双扩散机制:杂质可以通过空位和间隙两种方式扩散杂质可以通过空位和间隙两种方式扩散3、氧化增强、氧化增强/抑制扩散(抑制扩散(oxidation enhanced/retarded diffusion)OED/ORD半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)161)OED:对于原子B或P来说,其在硅中的扩散可以通过间隙硅原子进行。氧化时由于体积膨胀,造成大量Si
12、间隙原子注入,增加了B和P的扩散系数(12)Si2OI2 VSiO22 IstressA+IAI半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)172)ORD:对于Sb来说,其在硅中的扩散主要是通过空位进行。氧化注入间隙间隙和空位在硅中复合硅中空位浓度减小Sb的扩散被抑制I+VSis表示晶格上表示晶格上的的Si原子原子As受间隙和空位受间隙和空位扩散两种机制控扩散两种机制控制,氧化时的扩制,氧化时的扩散受影响较小散受影响较小半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)184、发射极推进效应(、发射极推进效应(Emitter Push effect)实验现象:在实验现象:在P
13、(磷)发射区下的(磷)发射区下的B扩散比旁边的扩散比旁边的B扩散快,扩散快,使得基区宽度改变。使得基区宽度改变。AIAI,由于发射区内大量由于发射区内大量A(P)I的存在使得反应向左进的存在使得反应向左进行,通过行,通过掺杂原子掺杂原子A(P)向下扩散并找到晶格位置的同时,向下扩散并找到晶格位置的同时,释放大量的释放大量的间隙原子间隙原子I,产生所谓,产生所谓“间隙原子泵间隙原子泵”效应效应,加,加快了硼的扩散。快了硼的扩散。PhosphorusBoron半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)19常用杂质硼(常用杂质硼(B),磷(),磷(P),砷(),砷(As)在硅中的性质)
14、在硅中的性质 1)硼)硼 B:III族元素,受主杂质,族元素,受主杂质,1150 时固溶度达时固溶度达2.41020 原子原子/cm3D0=1 cm2/s Ea=3.46 eV高浓度掺杂高浓度掺杂 如考虑场助效应如考虑场助效应 h 电场增强因子电场增强因子s/cmeV46.3exp0.1exp200 kTkTEDDDDaiii iaiiienpkTEDnpDDDexp00iiienpDDhD0半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)202)磷)磷 族元素,施主原子,有吸收族元素,施主原子,有吸收铜、金等快扩散杂质的性质(这铜、金等快扩散杂质的性质(这些杂质在缺陷处淀积会产生漏电
15、些杂质在缺陷处淀积会产生漏电),固溶度达固溶度达51021 原子原子/3。磷的本征扩散系数主要由中性磷的本征扩散系数主要由中性空位空位V0作用决定。作用决定。高浓度磷扩散高浓度磷扩散时浓度分布有三时浓度分布有三个区域。主要是磷离子与个区域。主要是磷离子与V0,V-,V=三种空位的作用造成的。三种空位的作用造成的。温度为温度为1000 时,尾区时,尾区的扩散系数的扩散系数比本征情况比本征情况下的扩散系数大二个数下的扩散系数大二个数量级。因此磷常作为深量级。因此磷常作为深结扩散的杂质结扩散的杂质s/cmeV68.3exp70.42kTDi20iiiiiennDnnDDhD半导体制造工艺基础第六章第
16、六章 扩散原理扩散原理(下下)213)砷)砷 族元素,施主杂质,半径与硅相同,族元素,施主杂质,半径与硅相同,扩散系数小,仅磷、硼的十分之一。扩散系数小,仅磷、硼的十分之一。在高掺杂情况下也不引起畸变。在高掺杂情况下也不引起畸变。在硅晶体中,砷激活量低于掺杂量,电激活浓度达在硅晶体中,砷激活量低于掺杂量,电激活浓度达 21021-3适宜于浅结,精确控制适宜于浅结,精确控制s/cmeV99.3exp17.92kTDiiiiennDDhD0半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)22气态相源扩散(气态相源扩散(gas source)液态源扩散(液态源扩散(liquid source
17、)固态源扩散(固态源扩散(solid source)旋涂源扩散(旋涂源扩散(spin-on-glass)注意:在引入扩散源后作推进扩散时,常常会在硅片上表面注意:在引入扩散源后作推进扩散时,常常会在硅片上表面有一氧化层或其它覆盖层保护硅片,使硅片中的杂质不会有一氧化层或其它覆盖层保护硅片,使硅片中的杂质不会挥发到大气中去。挥发到大气中去。扩散掺杂工艺扩散掺杂工艺半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)231、气态源扩散、气态源扩散利用载气(如利用载气(如N2)稀释杂质气体,杂质气体在高温下与硅表)稀释杂质气体,杂质气体在高温下与硅表面硅原子发生反应,释放出杂质原子向硅中扩散。面
18、硅原子发生反应,释放出杂质原子向硅中扩散。气态杂质源气态杂质源(剧毒气体剧毒气体):磷烷(磷烷(PH4)、砷烷()、砷烷(AsH3)、氢)、氢化锑(化锑(SbH3)、乙硼烷()、乙硼烷(H2B6)等)等半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)242、液态源扩散、液态源扩散利用载气(如利用载气(如N2)通过液态杂质源,携带着杂质蒸汽进)通过液态杂质源,携带着杂质蒸汽进入高温扩散反应管,杂质蒸汽在高温下分解,并与硅表入高温扩散反应管,杂质蒸汽在高温下分解,并与硅表面硅原子发生反应,释放出杂质原子向硅中扩散。面硅原子发生反应,释放出杂质原子向硅中扩散。舟舟半导体制造工艺基础第六章第六
19、章 扩散原理扩散原理(下下)251)液态源硼扩散)液态源硼扩散 源源 硼酸三甲脂硼酸三甲脂 B(CH3)O3 在在500 oC 以上分解反应以上分解反应 B(CH3)O3 B2O3+CO2+H2O .2B2O3+3Si 3SiO2+4B 例:例:预淀积预淀积:950 oC 通源通源 1020 分钟,分钟,N2 再分布再分布:1100 1200 o C干氧湿氧干氧干氧湿氧干氧半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)262)液态源磷扩散)液态源磷扩散 源源 三氯氧磷三氯氧磷 (POCl3)600 C 5POCl3 P2O5+3PCl5 2P2O5+5Si=5SiO2+4P(向硅中扩
20、散向硅中扩散)PCl5难分解,会腐蚀硅,故还要通入少量难分解,会腐蚀硅,故还要通入少量O2 4PCl5+5O2 2P2O5+10Cl2 例例:预淀积预淀积:1050 C N2 和和 O2 再分布再分布:950 C O2半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)273、固态源扩散、固态源扩散(B2O3,P2O5,BN等)等)舟舟惰性气体作为载气把杂质源蒸气输运到硅片表面,在扩惰性气体作为载气把杂质源蒸气输运到硅片表面,在扩散温度下,杂质化合物与硅反应生成单质杂质原子相硅散温度下,杂质化合物与硅反应生成单质杂质原子相硅内扩散。内扩散。半导体制造工艺基础第六章第六章 扩散原理扩散原理(
21、下下)28锑的箱法扩散锑的箱法扩散 硅片与扩散源同放一箱内,硅片与扩散源同放一箱内,在在N2气保护下扩散气保护下扩散 源源:Sb2O3:SiO2=1:4 (粉末重量比粉末重量比)2Sb2O3+3Si=4Sb+3SiO2 片状固态氮化硼扩散片状固态氮化硼扩散 活化处理活化处理 4BN+3O2 2B2O3+2N2 900 C 1 h.通通 O2 扩散扩散 2B2O3+3Si 3SiO2+4B BN片与硅片大小相当,和硅片相间均匀放置在舟上。片与硅片大小相当,和硅片相间均匀放置在舟上。不需载气,但以不需载气,但以N2或或Ar2保护。保护。半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)294
22、、旋涂掺杂法(旋涂掺杂法(spin-on-glass)用旋涂法在用旋涂法在Si表面形成掺杂氧化层,然后在高温表面形成掺杂氧化层,然后在高温下杂质向硅中扩散。下杂质向硅中扩散。源:源:As(arsenosilica););Sb(antimonysilica););B(borosilica););P(phosphorosilica)烘焙烘焙 200 C 15分钟去处溶剂分钟去处溶剂根据根据Rs和和xj要求决定扩散温度和时间要求决定扩散温度和时间特点特点:掺杂元素多:掺杂元素多 浓度范围广浓度范围广半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)30扩散层质量检验扩散层质量检验薄层电阻测量薄
23、层电阻测量结深测量结深测量掺杂分布测量掺杂分布测量半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)31四探针薄层电阻测量四探针薄层电阻测量 四根探针的四个针尖都保持在一四根探针的四个针尖都保持在一条直线上(条直线上(linear),并以等压力),并以等压力压在半导体样品表面。压在半导体样品表面。1和和4称为称为电流探针,由稳压电源恒电流供电流探针,由稳压电源恒电流供电;电;3和和4称为电位探针,测量这称为电位探针,测量这两个探针之间的电位差两个探针之间的电位差IVIVxRxIVjsj53.42ln2lnVItS S SS t时成立!时成立!1432半导体制造工艺基础第六章第六章 扩散原
24、理扩散原理(下下)32结深测量结深测量 磨角染色法(磨角染色法(bevel and stain)vpn结显示技术:不同导电类型的区域,由于电化学势不同,经染色后显示出不同颜色。v常用染色液:HF与01HNO3的混合液,使p区的显示的颜色比n区深。Bevelxj半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)33掺杂分布测量掺杂分布测量CV测量(测量(Capacitance-Voltage Measurement)测量结的反偏电容和电压的关系测量结的反偏电容和电压的关系可以测得扩散层的掺杂分布。可以测得扩散层的掺杂分布。VR1/C2对于均匀掺杂的单边突变结,结电对于均匀掺杂的单边突变结,
25、结电容由下式给出:容由下式给出:s 硅的介电常数硅的介电常数;NB 衬底掺杂浓度衬底掺杂浓度 Vbi 结的内建势结的内建势;VR 反偏电压反偏电压 qkTVVNqAVCRbiBs220 dVCdqAWNs20212半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)34二次离子质谱(二次离子质谱(Secondary Ion Mass Spectroscopy,SIMS)用高能离子束轰击样品,使用高能离子束轰击样品,使其产生正负二次离子,将这其产生正负二次离子,将这些二次离子引入质谱仪进行些二次离子引入质谱仪进行分析,再由检测系统收集,分析,再由检测系统收集,据此识别样品的组分。据此识别样品
26、的组分。Mass Spec DetectorSputter Gun半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)35非本征扩散前面讨论对于恒定扩散系数而言,只发生在掺杂浓度低于扩散温度下的本征载流子浓度ni时。当杂质浓度大于ni时,扩散系数变得与浓度有关,称为非本征扩散。非本征扩散区内,同时扩散或相继扩散的杂质之间存在着相互作用和协同效应,使扩散更为复杂。与浓度有关的扩散当基质原子离开晶格位置而产生空位,依照空位的电荷数,可有中性空位V0、受主空位V、双电荷受主V2、施主空位V+等。可以预期,某种带电状态下的空位密度,有类似与载流子浓度的温度相关性。exp()FiViEECCkT如果
27、杂质扩散以空位扩散为主,则D正比于空位密度。低掺杂浓度时,EFEi,空位密度等于Ci而与杂质浓度无关。正比与Ci的D也将和杂质浓度无关。高掺杂浓度时,EF向导带底移动,指数项大于1,这是CV增大,进而是D变大。如上图的右侧所示。()ssCDDC考虑扩散系数时,D可以写成:Cs为表面浓度,Ds为表面扩散系数,是用来描述与浓度有关的参数。扩散方程式为:()CFCDtxxx 可将扩散方程式写成一常微分方程式并以数值法求解。结深可以用下式表示1.6,1jsxDtD C当()21.1,2jsxD tDC当()30.87,3jsxD tDC当()扩散分布硅中的扩散硅内所测量到的D与杂质浓度的关系B和As,
28、其1,曲线(c)所示,非常陡峭。Au和Pt,-2,曲线(d)所示,呈一凹陷的形状。P,与V2有关,D随C2而变化,分布解决曲线(b)所示。但由于离解效应,扩散分布将呈现出不规则的形状。磷在不同表面浓度下,在1000下扩散1h后的分布在砷化镓中的锌扩散在砷化镓中的扩散会比在硅中要来得复杂,因为杂质的扩散包含砷和镓两种晶格原子移动。空位在砷化镓扩散过程中扮演了一个主要角色,因为p型和n型杂质最终必须进驻晶格位置上,然而空位的荷电状态迄今尚未确定。锌是砷化镓中最广为使用的扩散剂,它的D会随C2而变化,所以扩散分布如下图所示,是陡峭的。并注意即使是最低表面浓度的情况,扩散型态也属于非本征扩散。扩散相关
29、工艺横向扩散一维扩散方程基本能描述扩散工艺,但在掩蔽层的边缘例外,因为在边缘处杂质会向下、向横向扩散。这时必须考虑二维的扩散方程式,并使用数值分析技术求得在不同初始与边界条件下的扩散分布。显示一恒定表面初始浓度条件下的轮廓线,并假设D与浓度无关。垂直渗透约为2.8um横向渗透约为2.3um由于横向扩散作用,结包含了一个中央平面区及一个近似圆柱、曲率半径为rj的边。此外,如果掩蔽层有尖锐的角,在这个角处的结将因横向扩散而近似与圆球状。既然电场强度在圆柱与圆球结处较强,则该处雪崩击穿电压远低于有相同衬底掺杂的平面结处。半导体制造工艺基础第六章第六章 扩散原理扩散原理(下下)46本节课主要内容本节课主要内容常用杂质的扩散特性?常用杂质的扩散特性?B,P,As常用扩散掺杂方法?常用扩散掺杂方法?常用扩散掺杂层的质量测量?常用扩散掺杂层的质量测量?B:p型杂质,型杂质,OED;P:n型杂质,型杂质,深结,深结,OED;As:n型杂质,离子型杂质,离子注入精确控制实现浅结注入精确控制实现浅结气态源、液态源、固态源、气态源、液态源、固态源、旋涂法旋涂法薄层电阻:四探针法;结薄层电阻:四探针法;结深:染色法;掺杂分布:深:染色法;掺杂分布:C-V法,法,SIMS非本征扩散非本征扩散2241inCChxCDxtCeffA220iiiiennDnnDnpDnpDDD