1、1.1 探索勾股定理第一章 勾股定理导入新课讲授新课当堂练习课堂小结第1课时 认识勾股定理情境引入1.了解勾股定理的内容,理解并掌握直角三角形三边之间的数量关系(重点)2.能够运用勾股定理进行简单的计算(难点)学习目标导入新课导入新课 如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.情境引入几何画板:勾股树动态演示.gsp双击图标(图中每一格代表 一平方厘米)(1)正方形P的面积是 平方厘米;(2)正方形Q的面积是 平方厘米;(3)正方形R的面积是 平方厘米.121SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三边长度之间存在什么
2、关系吗?Sp=AC2 SQ=BC2 SR=AB2勾股定理的初步认识一讲授新课讲授新课上面三个正方形的面积之间有什么关系?做一做:观察正方形瓷砖铺成的地面.填一填:观察右边两幅图:完成下表(每个小正方形的面积为单位1).A的面积B的面积C的面积左图右图4?怎样计算正方形C的面积呢?9 16 9 方法一:割方法二:补方法三:拼分割为四个直角三角形和一个小正方形.补成大正方形,用大正方形的面积减去四个直角三角形的面积.将几个小块拼成若干个小正方形,图中两块红色(或绿色)可拼成一个小正方形.分析表中数据,你发现了什么?A的面积 B的面积C的面积左图4913右图16925结论:以直角三角形两直角边为边长
3、的小正方形的面积的和,等于以斜边为边长的正方形的面积.几何画板:面积法验证勾股定理.gsp双击图标 分别以5cm、12cm为直角三角形的直角边作出一个直角三角形ABC,测量斜边的长度,然后验证上述关系对这个直角三角形是否成立.做一做几何语言:在RtABC中,C=90,a2+b2=c2(勾股定理).aABCbc总结归纳定理揭示了直角三角形三边之间的关系.直角三角形两直角边的平方和等于斜边的平方如果a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2勾股定理 求下列直角三角形中未知边的长:练一练8 8x171712125 5x解:由勾股定理可得:82+x2=172 即:x2=172-
4、82 x=15解:由勾股定理可得:52+122=x2 即:x2=52+122 x=13 我们一起穿越回到2500年前,跟随毕达哥拉斯再去他那位老朋友家做客,看到他朋友家用砖铺成的地面(如下图所示):ABC穿越毕达哥拉斯做客现场正方形A的面积正方形B的面积正方形C的面积+=一直角边2另一直角边2斜边2+=知识链接例1 已知ACB=90,CDAB,AC=3,BC=4.求CD的长.利用勾股定理进行计算二典例精析解:由勾股定理可得,AB2=AC2+BC2=25,即 AB=5.根据三角形面积公式,ACBC=ABCD.CD=.ADBC342121512方法总结 由直角三角形的面积求法可知直角三角形两直角边
5、的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用例2 如图,已知AD是ABC的中线 求证:AB2AC22(AD2CD2)证明:如图,过点A作AEBC于点E.在RtACE、RtABE和RtADE中,AB2AE2BE2,AC2AE2CE2,AE2AD2ED2,AB2AC2(AE2BE2)(AE2CE2)2AD2DB2DC22DE(DCDB)又AD是ABC的中线,BDCD,AB2AC22AD22DC22(AD2CD2)E方法总结 构造直角三角形,利用勾股定理把需要证明的线段联系起来一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题解:当高AD在ABC内部时,
6、如图.在RtABD中,由勾股定理,得BD2AB2AD2202122162,BD16;在RtACD中,由勾股定理,得CD2AC2AD215212281,CD9.BCBDCD25,ABC的周长为25201560.例3 在ABC中,AB20,AC15,AD为BC边上的高,且AD12,求ABC的周长 题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况如在本例题中,易只考虑高AD在ABC内的情形,忽视高AD在ABC外的情形当高AD在ABC外部时,如图.同理可得 BD16,CD9.BCBDCD7,ABC的周长为7201542.综上所述,ABC的周长为42或60.方法总结解析:因为AEBE,所以S
7、ABE AEBE AE2.又因为AE2BE2AB2,所以2AE2AB2,所以SABE AB2 ;同理可得SAHCSBCF AC2 BC2.又因为AC2BC2AB2,所以阴影部分的面积为 AB2 .例4 如图,以RtABC的三边长为斜边分别向外作等腰直角三角形若斜边AB3,则图中ABE的面积为_,阴影部分的面积为_2121414941412129方法总结 求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系求下列图形中未知正方形的面积及未知边的长度(口答):?225100已知直角三角形两边,求第三边.练一练当堂
8、练习当堂练习1.图中阴影部分是一个正方形,则此正方形的面积为 .8 cm10 cm36 cm2.求下列图中未知数x、y的值:解:由勾股定理可得:81+144=x2 即:x2=225 x=15解:由勾股定理可得:y2+144=169 即:y2=25 y=53.在ABC中,C=90.(1)若a=6,b=8,则c=.(2)若c=13,b=12,则a=.4.若直角三角形中,有两边长是3和4,则第三 边长的平方为()A 25 B 14 C 7 D 7或25105D5.一高为2.5米的木梯,架在高为2.4米的墙上(如图),这时梯脚与墙的距离是多少?ABC解:在RtABC中,根据勾股定理,得:BC2=AB2
9、-AC2 =2.52-2.42=0.49,所以BC=0.7.答:梯脚与墙的距离是0.7米.6.求斜边长17 cm、一条直角边长15 cm的直角三角形的面积.解:设另一条直角边长是x cm.由勾股定理得:152+x2=172,x2=172-152=289225=64,所以 x=8(负值舍去),所以另一直角边长为8 cm,直角三角形的面积是:6015821(cm2).思维拓展S1S2S3S4S5S6S7S5=S1+S2=4,S7=S5+S6=10.已知S1=1,S2=3,S3=2,S4=4,求S5,S6,S7的值.S6=S3+S4=6,认识勾股定理如果直角三角形两直角边长分别为a,b,斜边长为 c
10、,那么a2+b2=c2 课堂小结课堂小结利用勾股定理进行计算小魔方站作品小魔方站作品 盗版必究盗版必究语文语文附赠 中高考状元学习方法 前前 言言 高考状元是一个特殊的群体,在许多高考状元是一个特殊的群体,在许多人的眼中,他们就如浩瀚宇宙里璀璨夺目人的眼中,他们就如浩瀚宇宙里璀璨夺目的星星那样遥不可及。但实际上他们和我的星星那样遥不可及。但实际上他们和我们每一个同学都一样平凡而普通,但他们们每一个同学都一样平凡而普通,但他们有是不平凡不普通的,他们的不平凡之处有是不平凡不普通的,他们的不平凡之处就是在学习方面有一些独到的个性,又有就是在学习方面有一些独到的个性,又有着一些共性,而这些对在校的同
11、学尤其是着一些共性,而这些对在校的同学尤其是将参加高考的同学都有一定的借鉴意义。将参加高考的同学都有一定的借鉴意义。青春风采北京市文科状元北京市文科状元 阳光女孩阳光女孩-何旋何旋 高考总分:高考总分:692分分(含含20分加分分加分)语文语文131分分 数学数学145分分英语英语141分分 文综文综255分分毕业学校:北京二中毕业学校:北京二中报考高校:报考高校:北京大学光华管理学北京大学光华管理学院院来自北京二中,高考成绩672分,还有20分加分。“何旋给人最深的印象就是她的笑声,远远的就能听见她的笑声。”班主任吴京梅说,何旋是个阳光女孩。“她是学校的摄影记者,非常外向,如果加上20分的加
12、分,她的成绩应该是692。”吴老师说,何旋考出好成绩的秘诀是心态好。“她很自信,也很有爱心。考试结束后,她还问我怎么给边远地区的学校捐书”。班主任:我觉得何旋今天取得这样的成绩,我觉得,很重要的是,何旋是土生土长的北京二中的学生,二中的教育理念是综合培养学生的素质和能力。我觉得何旋,她取得今天这么好的成绩,一个来源于她的扎实的学习上的基础,还有一个非常重要的,我觉得特别想提的,何旋是一个特别充满自信,充满阳光的这样一个女孩子。在我印象当中,何旋是一个最爱笑的,而且她的笑特别感染人的。所以我觉得她很阳光,而且充满自信,这是她突出的这样一个特点。所以我觉得,这是她今天取得好成绩当中,心理素质非常好,是非常重要的。高考总分高考总分:711分分毕业学校毕业学校:北京八中北京八中语文语文139分分 数学数学140分分英语英语141分分 理综理综291分分报考高校:报考高校:北京大学光华管理学院北京大学光华管理学院北京市理科状元杨蕙心北京市理科状元杨蕙心