1、24.1圆的有关性质(圆的有关性质(圆周角圆周角)九年级上册九年级上册 本课本课是在学习了垂径定理、圆心角及弧、弦、圆心角是在学习了垂径定理、圆心角及弧、弦、圆心角的关系的基础上探究同弧(或等弧)所对圆周角之间的关系的基础上探究同弧(或等弧)所对圆周角之间以及圆周角与圆心角之间的数量关系以及圆周角与圆心角之间的数量关系课件说课件说明明 学习目标:学习目标:1了解并证明圆周角定理及其推论;了解并证明圆周角定理及其推论;2经历探究同弧(或等弧)所对圆周角与圆心角之经历探究同弧(或等弧)所对圆周角与圆心角之 间的关系的过程,进一步体会分类讨论、转化的间的关系的过程,进一步体会分类讨论、转化的 思想方
2、法思想方法 学习重点:学习重点:圆周角定理圆周角定理课件说课件说明明 1思考和练习思考和练习图中图中ACB 的顶点和边有哪些特点?的顶点和边有哪些特点?AOBC顶点顶点在圆上,并且在圆上,并且两边两边都和圆相交的角叫圆周角都和圆相交的角叫圆周角如:如:ACB 顶点在圆上,并且两边都和圆相交的角ABCDEO练习一:判断下列各图中,哪些是圆周角,为什么?图中图中ACB 和和AOB 有怎样的关系?有怎样的关系?请用量角器测量请用量角器测量2探究探究BCOAAOBACB212探究探究BCOABCOA(1)在圆上任取)在圆上任取 ,画出圆心角,画出圆心角BOC 和圆周角和圆周角BAC,圆心角与圆周角有几
3、种位置关系?,圆心角与圆周角有几种位置关系?BCBCOA(2)如图,如何证明一条弧所对的圆周角等于它)如图,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?所对的圆心角的一半?3证明猜想证明猜想BCOAOA=OC,A=C又BOC=A+C,BOCBAC21我们来分析上页的前两种情况,第三种情况请同学我们来分析上页的前两种情况,第三种情况请同学们完成证明们完成证明(3)如图,如何证明一条弧所对的圆周角等于它)如图,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?所对的圆心角的一半?D3证明猜想证明猜想BCOA证明:如图,连接证明:如图,连接 AO 并延长交并延长交 O 于点于点 DOA=O
4、B,BAD=B又BOD=BAD+B,BODBAD21CODCAD21同理,同理,BOCCADBADBAC213证明猜想证明猜想 圆周角定理:圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半一条弧所对的圆周角等于它所对的圆心角的一半例题 已知:A是圆O的圆周角,A=40 求:OBC的度数 OCBA思考:思考:一条弧所对的圆周角之间有什么关系?同弧或等弧一条弧所对的圆周角之间有什么关系?同弧或等弧所对的圆周角之间有什么关系?所对的圆周角之间有什么关系?同弧或等弧所对的圆周角相等同弧或等弧所对的圆周角相等4探究探究ADBCO1.如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内
5、角分成8个角,这些角中哪些是相等的角?ABCD123456781=45=82=73=6练 习在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等六、思考:思考:半圆(或直径)所对的圆周角有什么特殊性?半圆(或直径)所对的圆周角有什么特殊性?半圆(或直径)所对的圆周角是直角,半圆(或直径)所对的圆周角是直角,90的圆周的圆周角所对的弦是直径角所对的弦是直径.4探究探究C1AOBC2C3 8 你能设法确定一个圆形纸片的圆心吗?你有多少种方法?DABCOOO方法一方法二方法三方法四AB因此,在点B射门为好。如图,在足球比赛中,甲、
6、乙两名队 员互相配合向对方球门MN进攻,当 甲带球冲到A点时,乙已跟随冲到B点,此时自己直接射门好,还是迅速将球回传给乙,让乙射门好?(在射门时球员相对与球门的张角越大射门的成功率就越大。)解:过M、N、B作圆,则点A在圆外因为AMCN21 而MCN O=BAB连接M、C练习练习:1,如图如图 AB是是 O的直径的直径,C,D是圆上的是圆上的两点两点,若若ABD=40,则则BCD=.ABOCD40500如图,如图,O 的直径的直径 AB 为为 10 cm,弦,弦 AC 为为 6 cm,ACB 的平分线交的平分线交 O 于点于点 D,求,求 BC,AD,BD 的长的长5应用应用解:连接解:连接 OD,AD,BD,ACBDO22ACAB 22610 AB 是是 O 的直径,的直径,ACB=ADB=90在在 RtABC 中,中,BC=8(cm)如图,如图,O 的直径的直径 AB 为为 10 cm,弦,弦 AC 为为 6 cm,ACB 的平分线交的平分线交 O 于点于点 D,求,求 BC,AD,BD 的长的长5应用应用ACBDOCD 平分平分ACB,ACD=BCD,AOD=BOD AD=BD 在在 RtABD 中,中,AD2+BD2=AB2,AD=BD=AB22=(cm)25