(完整版)不等式常见题型分析.doc

上传人(卖家):2023DOC 文档编号:5483743 上传时间:2023-04-21 格式:DOC 页数:7 大小:303.50KB
下载 相关 举报
(完整版)不等式常见题型分析.doc_第1页
第1页 / 共7页
(完整版)不等式常见题型分析.doc_第2页
第2页 / 共7页
(完整版)不等式常见题型分析.doc_第3页
第3页 / 共7页
(完整版)不等式常见题型分析.doc_第4页
第4页 / 共7页
(完整版)不等式常见题型分析.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:(2)传递性:(3)加法法则:;(同向可加)(4)乘法法则:;(同向同正可乘)(5)倒数法则:(6)乘方法则:(7)开方法则:2、应用不等式的性质比较两个实数的大小:作差法(作差变形判断符号结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:设相应的一元二次方程的两根为,则不等式的解的各种情况如下表: 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R 2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分

2、母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。3、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把它的坐标()代入Ax+By+C,所得到

3、实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)3、线性规划的有关概念:线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件线性目标函数:关于x、y的一次式z=ax+by是欲达到最大值或最小值所涉及的变量x、y的解析式,叫线性目标函数线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解由

4、所有可行解组成的集合叫做可行域使目标函数取得最大或最小值的可行解叫线性规划问题的最优解4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,列出线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)依据线性目标函数作参照直线ax+by0,在可行域内平移参照直线求目标函数的最优解(四)基本不等式1若a,bR,则a2+b22ab,当且仅当a=b时取等号.2如果a,b是正数,那么变形: 有:a+b;ab,当且仅当a=b时取等号.3如果a,bR+,ab=P(定值),当且仅当a=b时,a+b有最小值;如果a,bR+,且a+b=S(定值),当且仅当a=b时,ab有最大值.

5、注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的重要条件“一正,二定,三取等”4.常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、cR,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。不等式主要题型讲解(一) 不等式与不等关系题型一:不等式的性质1. 对于实数中,给出下列命题: ; ; ; ; ; ; ; ,则。其中正确的命题是_题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)2. 设,试比较的大小3. 比较1+与的大小4. 若,则的大小关系是

6、.(二) 解不等式题型三:解不等式5. 解不等式 6. 解不等式。7. 解不等式8. 不等式的解集为x|-1x2,则=_, b=_9. 关于的不等式的解集为,则关于的不等式的解集为10. 解关于x的不等式题型四:恒成立问题11. 关于x的不等式a x2+ a x+10 恒成立,则a的取值范围是_ 12. 若不等式对的所有实数都成立,求的取值范围.13. 已知且,求使不等式恒成立的实数的取值范围。(三)基本不等式题型五:求最值14. (直接用)求下列函数的值域(1)y3x 2 (2)yx15. (配凑项与系数)(1)已知,求函数的最大值。(2)当时,求的最大值。16. (耐克函数型)求的值域。注

7、意:在应用基本不等式求最值时,若遇等号取不到的情况,应结合函数的单调性。17. (用耐克函数单调性)求函数的值域。18. (条件不等式)(1) 若实数满足,则的最小值是 .(2) 已知,且,求的最小值。(3) 已知x,y为正实数,且x 21,求x的最大值.(4) 已知a,b为正实数,2baba30,求函数y的最小值.题型六:利用基本不等式证明不等式19. 已知为两两不相等的实数,求证:20. 正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc21. 已知a、b、c,且。求证:题型七:均值定理实际应用问题:22. 某工厂拟建一座平面图形为矩形且面积为200m2的三级污水处理池(平

8、面图如图),如果池外圈周壁建造单价为每米400元,中间两条隔墙建筑单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价。(四)线性规划题型八:目标函数求最值23. 满足不等式组,求目标函数的最大值24. 已知实系数一元二次方程的两个实根为、,并且,则的取值范围是 25. 已知满足约束条件: ,则的最小值是26. 已知变量(其中a0)仅在点(3,0)处取得最大值,则a的取值范围为 。27. 已知实数满足如果目标函数的最小值为,则实数等于( )题型九:实际问题28. 某饼店制作的豆沙月饼每个成本35元,售价50元;凤梨月饼每个成本20元,售价30元。现在要将这两种月饼装成一盒,个数不超过10个,售价不超过350元,问豆沙月饼与凤梨月饼各放几个,可使利润最大?又利润最大为多少?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文((完整版)不等式常见题型分析.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|