1、2021年中考数学专题复习:一次函数 试题精选汇编一选择题(共5小题)1函数y=+中自变量x的取值范围是()Ax2Bx2且x1Cx2且x1Dx12若函数,则当函数值y=8时,自变量x的值是()AB4C或4D4或3如果两个变量x、y之间的函数关系如图所示,则函数值y的取值范围是()A3y3B0y2C1y3D0y34如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿ADEFGB的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则ABP的面积S随着时间t变化的函数图象大致是()ABCD5如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁
2、运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()ABCD二填空题(共5小题)6如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为7已知直线y=2x+(3a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是8如图,A1B1A2,A2B2A3,A3B3A4,AnBnAn+1都是等腰直角三角形,其中点A1、A2、An在x轴上,点B1、B2、Bn在直线y=x上,已知OA1=1,则OA2015的长为9如图1,在某个盛水容器内,有一个小水杯,小水杯内
3、有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满10设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒三解答题(共5小题)11已知一次函数y=kx+3的图象经过点(1,4)(1)求这个一次函数的解析式;(2)求关于x的不等式kx+36的解集12某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶
4、的成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元(1)请写出y关于x的函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?AB成本(元/瓶)5035利润(元/瓶)201513小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元计划购进两种服装共100件,其中甲种服装不少于65件(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0a20)元的价格进行促销活动,乙种服装价
5、格不变,那么该服装店应如何调整进货方案才能获得最大利润?14甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地乙车从B地直达A地,两车同时到达A地甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t=小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米15母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒
6、的单价比为2:3,单价和为200元(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?参考答案与试题解析一选择题(共5小题)1B2D3D4B5B6(1,2)77a982201495102011解:(1)一次函数y=kx+3的图
7、象经过点(1,4),4=k+3,k=1,这个一次函数的解析式是:y=x+3(2)k=1,x+36,x3,即关于x的不等式kx+36的解集是:x312解:(1)A种品牌白酒x瓶,则B种品牌白酒(600x)瓶,依题意,得y=20x+15(600x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600x)瓶,依题意,得50x+35(600x)=26400,解得x=360,每天至少获利y=5x+9000=1080013解:(1)设甲种服装购进x件,则乙种服装购进(100x)件,根据题意得:,解得:65x75,甲种服装最多购进75件;(2)设总利润为W元,W=(12080a)x+(9060)
8、(100x)即w=(10a)x+3000当0a10时,10a0,W随x增大而增大,当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;当a=10时,所以按哪种方案进货都可以;当10a20时,10a0,W随x增大而减小当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件14解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(3602)(4806011)=7206=120(千米/小时)t=360120=3(小时)(2)当0x3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,y=120x(0x3)当3x4时,y=3604x7时
9、,设y=k2x+b,把(4,360)和(7,0)代入,可得解得y=120x+840(4x7)(3)(48060120)(120+60)+1=300180+1=(小时)当甲车停留在C地时,(480360+120)60=2406=4(小时)两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x120(x1)360=120,所以48060x=120,所以60x=360,解得x=6综上,可得乙车出发后两车相距120千米故答案为:60、315解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30a36,a,b的值均为整数,a的值为:30、33、36,共有三种方案;(3)设店主获利为w元,则w=10a+(18m)b,由80a+120b=9600,得:a=120b,则w=(3m)b+1200,要使(2)中方案获利都相同,3m=0,m=3,此时店主获利1200元