1、第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)几 列 几 行 竖排叫列 横排叫行(从左往右看) (从前往后看)2、 平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述.3、 图形左、右平移: 行不变 图形上、下平移: 列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同.都是求几个相同加数的和的简便运算.例如: 5表示求5个的和是多少?2、分数乘分数是求一个数的几分之几是多少. 例如: 表示求的是多少?(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变.(整数和分母约分)2、分数与分
2、数相乘:用分子相乘的积做分子,分母相乘的积做分母.3、为了计算简便,能约分的要先约分,再计算.注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算.(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数. 一个数(0除外)乘小于1的数(0除外),积小于这个数. 一个数(0除外)乘1,积等于这个数.(四)、分数混合运算的运算顺序和整数的运算顺序相同.(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用.乘法交换律: a b = b a 乘法结合律: ( a b )c = a ( b c )乘法分配律: ( a + b )c = a c + b c二、分
3、数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图.2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数.4、写数量关系式技巧: (1)“的” 相当于 “” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量三、倒数1、倒数的意义: 乘积是1的两个数互为倒数.强调:互为倒数,即倒
4、数是两个数的关系,它们互相依存,倒数不能单独存在.(要说清谁是谁的倒数).2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置.(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置.(3)、求带分数的倒数:把带分数化为假分数,再求倒数.(4)、求小数的倒数: 把小数化为分数,再求倒数.3、1的倒数是1; 0没有倒数. 因为11=1;0乘任何数都得0,(分母不能为0)4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1.第三单元 分数除法一、 分数除法1、分数除法的意义:乘法: 因数 因数 =
5、积 除法: 积 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算.2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数.3、 规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数.4、 “”叫做中括号.一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的.二、分数除法解决问题(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量. )1、数量关系式和分数乘法解决问题中的
6、关系式相同:(1)分率前是“的”: 单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答.(2)算术(用除法): 分率对应量对应分率 = 单位“1”的量 3、求一个数是另一个数的几分之几:就 一个数另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位“1”的量 或: 求多几分之几:大数小数 1 求少几分之几: 1 - 小数大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比.2、在两个数的比中,比号前面的数叫做比的前项,比
7、号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示) 前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系.也可以表示两个不同量的比,得到一个新量.例: 路程速度=时间.4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示.比值:相当于商,是一个数,可以是整数,分数,也可以是小数.5、根据分数与除法的关系,两个数的比也可以写成分数形式.6、比和除法、分数的联系: 比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值7、比和除法、分数的区
8、别:除法是一种运算,分数是一个数,比表示两个数的关系.8、根据比与除法、分数的关系,可以理解比的后项不能为0. 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系.(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变.2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比.3、根据比的基本性质,可以把比化成最简单的整数比.依据比的基本性质
9、:4.化简比: 用比的前项和后项同时除以它们的最大公因数.(1) 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.两个小数的比:向右移动小数点的位置,先化成整数比再化简.(2)用求比值的方法.注意: 最后结果要写成比的形式.如: 1510 = 1510 = = 325按比例分配:把一个数量按照一定的比来进行分配.这种方法通常叫做按比例分配.如: 已知两个量之比为,则设这两个量分别为.6、 路程一定,速度比和时间比成反比.(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比.(如:工作总量相同,工作时间比是3:2,工作效率比则是2
10、:3)第四单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形.2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心.一般用字母O表示.它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径.一般用字母r表示.把圆规两脚分开,两脚之间的距离就是圆的半径.4、直径:通过圆心并且两端都在圆上的线段叫做直径.一般用字母d表示.直径是一个圆内最长的线段.5、圆心确定圆的位置,半径确定圆的大小.6、在同圆或等圆内,有无数条半径,有无数条直径.所有的半径都相等,所有的直径都相等.7在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的.用字母表示为:d
11、2r或r 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的这条直线叫做对称轴.9、长方形、正方形和圆都是对称图形,都有对称轴.这些图形都是轴对称图形.10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆.只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环.二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长.用字母C表示.2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长.发现一般规律,就是圆周长与
12、它直径的比值是一个固定数().3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.用字母(pai) 表示.(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数.圆周率是一个无限不循环小数.在计算时,一般取 3.14.(2)、在判断时,圆周长与它直径的比值是倍,而不是3.14倍.(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之.4、圆的周长公式: C= d d = C 或C=2 r r = C 25、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽.6、区分周长的一半和半圆的周长:(1)
13、 周长的一半:等于圆的周长2 计算方法:2 r 2 即 r (2)半圆的周长:等于圆的周长的一半加直径. 计算方法:r2r 即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积. 用字母S表示.2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形.顶点在圆心的角叫做圆心角.3、圆面积公式的推导:(1)、用逐渐逼近的转化思想: 体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体.(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形.(3)、拼出的图形与圆的周长和半径的关系.圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 因
14、为: 长方形面积 = 长 宽所以: 圆的面积 = 圆周长的一半 圆的半径 S圆 = r r 圆的面积公式: S圆 = r2 r2 = S 4、环形的面积: 一个环形,外圆的半径是R,内圆的半径是r.(Rr环的宽度)S环 = R 或环形的面积公式: S环 = (R).5、扇形的面积计算公式: S扇 = r2(n表示扇形圆心角的度数)6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数.而面积扩大或缩小的倍数是这倍数的平方倍. 例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍.7、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方. 例如:两
15、个圆的半径比是23,那么这两个圆的直径比和周长比都是23,而面积比是498、任意一个正方形与它内切圆的面积之比都是一个固定值,即:49、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小.反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短.10、确定起跑线:(1)、每条跑道的长度 = 两个半圆形跑道合成的圆的周长 + 两个直道的长度.(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度.(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是: 2跑道的宽度(4)、当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加厘米.
16、11、常用各值结果: = 3.142 = 6.28 3 = 9.42 5 = 15.7 6 = 18.84 7 = 21.98 9 = 28.2610 = 31.4 16 = 50.24 36 = 113.0464 = 200.9696 = 301.444 = 12.56 8 = 25.12 25 = 78.512、常用平方数结果 = 121 = 144 = 169 = 196 = 225 = 256 = 289 = 324 = 361第五单元 百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几.百分数是指的两个数的比,因此也叫百分率或百分比.2、 千分数:表示一个数
17、是另一个数的千分之几.3、 百分数和分数的主要联系与区别:(1) 联系:都可以表示两个量的倍比关系.(2) 区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位.、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数.4、百分数的写法:通常不写成分数形式,而在原来分子后面加上“”来表示.二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号.2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号.
18、(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数.2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式.先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.(三)常见的分数与小数、百分数之间的互化 = 0.5 = 50% = 0.2 = 20% = 0.625 = 62.5% = 0.25 = 25% = 0.4 = 40% = 0.125 = 12.5% = 0.75 = 75% = 0.6 = 60% = 1.375 = 37.5% = 0.0625 =
19、 6.25% = 0.8 = 80% = 0.875 = 87.5% = 0.04 = 4 = 0.08 = 8 = 0.12 = 12 = 0.16 = 16 三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:合格率 = 发芽率 = 出勤率 = 达标率 = 成活率 = 出粉率 = 烘干率 = 含水率 = 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%.(一般出粉率在70、80%,出油率在30、40%.)2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题
20、中的关系式相同:(1)分率前是“的”: 单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”. 解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答.(2)算术(用除法): 分率对应量对应分率 = 单位“1”的量 4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量单位“1”的量 100% 或: 求多百分之几:(大数小数 1) 100% 求少百分之几:( 1 - 小数大数) 100% (二)、折扣1、折扣:商品按原定价格的百分之几出
21、售,叫做折扣.通称“打折”.几折就表示十分之几,也就是百分之几十.例如八折=80,六折五=0.65=652、一成是十分之一,也就是10%.三成五就是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家.2、纳税的意义:税收是国家财政收入的主要来源之一.国家用收来的税款发展经济、科技、教育、文化和国防安全等事业.3、应纳税额:缴纳的税款叫做应纳税额.4、税率:应纳税额与各种收入的比率叫做税率.5、应纳税额的计算方法:应纳税额 = 总收入 税率(四)利息1、存款分为活期、整存整取和零存整取等方法.2、储蓄的意义:人们常常把暂
22、时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入.3、本金:存入银行的钱叫做本金.4、利息:取款时银行多支付的钱叫做利息.5、利率:利息与本金的比值叫做利率.6、利息的计算公式:利息本金利率时间7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)第六单元 统计一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系.也就是各部分数量占总数的百分比(因此也叫百分比图).二、常用统计图的优点:1、条形统计图:可以清楚的
23、看出各种数量的多少.2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况.3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系.三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大.(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比.)第七单元 数学广角一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量.二、“鸡兔同笼”问题的解题方法1、猜测法2、假设法(1) 假如都是兔(2) 假如都是鸡(3) 古人“抬脚法”:解答思路:假如每只鸡、每只兔各抬起一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就少了一半.这种思维方法叫化归法.关系式:鸡兔总脚数2-鸡兔总数 = 兔的只数; 鸡兔总数 - 兔的只数 = 鸡的只数.3、列方程法