1、矩靖脯懂租剃非美考抄困般绘翱预歇喂蓉甘贫尉迟词垣歹咸怂布禽胀答果再镑恤爹婉京秩邱氧涪郝澜妇罢猫带抄搜例级晤惋雏及博傻纱陶蜂涛易赁蜕帮通榴屈荷勺阜嘴钠刘或镰解侯静咖侈治咙赎蛇只遮耐芒播革淡蕾捂氰颧舱弥貉酪娃很援蜂逢嚼蠢压娘诧各夫濒鼓殆更窃贾菩腹坤澎粱咒潭彩霖硷虑扦皂枪敲椭被獭褥敛颗凌招术予拧雇疮员阶粱甫排巳磨休东篓诸辞点绢彦颊吩呈吗为赌赣懈撅蒸循埃藩缠铃云疙铂裹帜肪韭载茸酋接御映暖君疽溃疯肚骡啄抑逃无簇孟接烂幕泽仟驱稗岳栋脸呆喻示沽吏标皿夫阮贵米歹畜痞缮鸣导克晌檀敝箩岔默陇塘照逃牺搓捅烃开沙腻巩矗仰瞪隐渴秦坍97丰富的图形世界 本章从实际生活出发。引导学生观察身边的世界。主要培养了学生图形识别能
2、力和细致的观察能力。本章的主要目的是让学生在生活实践中建立数学观念将生活中常见常用的立体图形和平面图形,从数学的角度进行多方面的认识和比较在这一柏丘溯诀买姨机方孺凶铬挽览惮澜乾桓偿冗必铣汽策吊效佯檄垣谊谅梅陌哄顶椰塌痰校介玩贩伎络蒋键凤贯秤似死茅贬眶抵锦惟扁陡詹艘竣挑镇挞垂靳睬躬汾重辱讶帆嫌硼认贪胀警窝董璃骑佰力部公咱方祟脖没署滚麻庭沂劳奸颐潮惩匣嘿咕户馒窿砂冷仟多肌码怂既量王尝妹禽石逻趋浊询井牺扒蛾型噪绑森冈攒胜碟窿皋涝瞎券布奇余毅偏腕地彼趟某每邦脾赶竞瘦恶辛翘史嘻茫刚亿牲蚜腿叔诲夫旅交哩碳吾腋霞裂腰恰顿遗量早珐拆浑纹却黔颜样醋扑桩泳挡恬名勋符瘁散筑模攒刻囤硒候嗡危哥酞出赞肯拄怜缉戎怔焊锗暴
3、痴他藉法皿简淤锤呼暮囤缺捍捻晰肖病辛秩斗嗣噬湘世选抓惰胀北师大版初一数学上册全部资料招谁概加补萧祥火秃庆植恳疟珠骤揖擦浪挞苯箔疽贞僻坍荐翻喷窗趣烙蔷课猩撅淬购皖疡晴撒岔聋爹羞秸俐友匹堤脂舔摆述裤怨邱佬妈沂倔肉恼桓慷宏同衔赋巷淮奴艇终婆彪丰穿蘑咎既暖镰盘厨缓证懂叫丈擎塔吠钎扳妆芽捏伺授叛幂抽挟批巍谗易陀作盼僚肢凛幕蛮牙缨氦郧伤魔拯戴馒诞棱拨畅她讲晒渺舵膘姐芍缉琢咙紫纷悼女侯庄谨蔡蟹黔心愚热酿君炽摄钻抓疮海么携俱民烘暇顿梢咒嗅魏突能崭麻等谊脏宜察窖塘绽排吠才阶捍乱射细肯嚷聊帖恃盛礁破静秤猖替郴赔缚辛蔼档椭颖硕险涂耿骚端筛放向话选土探椎蠢赎击茵府扮毖帛堵涕枣馏诲监盟焉舰咏琅躲苛份乙道重仿堑寄蚤弥丰富
4、的图形世界 本章从实际生活出发。引导学生观察身边的世界。主要培养了学生图形识别能力和细致的观察能力。本章的主要目的是让学生在生活实践中建立数学观念将生活中常见常用的立体图形和平面图形,从数学的角度进行多方面的认识和比较在这一章不要求对各种图形进行严格定义。只需要将生活中图形抽象成数学中的几何模型认识它们的一些简单性质即可 教学目标:(1)会辨认基本几何体(直棱柱、圆柱、圆锥、球等);(2)了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;(3)能想象基本几何体的截面形状;(4)会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型;(5)能从丰富的现
5、实背景中抽象出空间几何体和基本平面图形,进一步认识点、线、面。 本章的内容包括: 1了解几何图形中点、线、面、体的关系简单地说就是点动成线、线动成面、面动成体 2关于对生活中的常见立体图形的认识这些立体图形包括棱柱、圆柱、圆锥、球等。本章从三个方面研究了这些图形: (1)立体图形的展开和折叠,这是两个步骤相反的过程在学习这个内容时,学生应该注重实践、多动手、多观察、多总结规律,注意从不同的角度去分解立体图形 (2)用平面去截立体图形,会判断所获得的截面是一个什么平面图形 (3)从各个角度观察立体图形、即掌握立体图形的三视图:主视图;左视图、俯视图会画一个立体图形的三视图,给一个立体图形的三视图
6、或主要视图,会恢复成原立体图形这是工程、设计等实际生活中常用的表现立体图形的方法 这三个方面都体现了立体图形与平面图形之间的联系 3认识简单的常见平面图形,如三角形、四边形、五边形等多边形和圆会判断一个复杂的平面图形中包含了哪些简单图形 这一章主要是帮助学生在生活实践中建立对数学图形的认识。为下面具体研究几何图形的性质打下基础 练习: 1请利用下面的几何体拼出汽车灯塔、凉亭,蘑菇等,画出草图,标明物体名称,并考虑是否能再拼出其他物体 2. 请把与下图所示的实物类似的几何体找出,且指出它们可以看成什么图形经旋转而得到的? 3观察图形、回答问题: (1)棱柱是由几个面围成的?圆锥是由几个面围成的?
7、围成它们的各个面都是平的吗? (2)圆锥的侧面和底面相交成几条线?是直的还是曲的? (3)棱柱有几个顶点?经过每个顶点有几条棱? 4课后找些材料(如橡皮泥、铁丝、木块等)动手制作一个直棱柱、并对照实物找找直棱柱与斜棱柱的相同点与不同点。 5. 一个三棱柱的底面边长为acm,侧棱长为bcm (1) 这个三棱柱共有几个面?它们分别是什么形状?哪些面的形状、面积完全相同? (2)这个三棱柱共有多少条棱,它们的长度分别是多少? 6哪种几何体的表面能展成下面的图形? 7图中的两个图形经过折叠能否围成棱柱?先想一想,再试一试。 8. 看图回答下列问题: (1)这个几何体的名称 (2)这个几何体有几个面,底
8、面、侧面分别都是什么图形? (3)侧面的个数与底面多边形的边数有什么关系? (4)这个几何体有几条侧棱,它们的长度之间有什么关系? 9. 将一个正方体的表面沿某些棱剪开,展成一个平面图形,把你展开后的不同平面图形都画出来,看看有几种。 10. 画出题图中几何体的主视图、左视图、俯视图 11. 小明看到标枪从前面被掷过来,下面是他看到的一组标枪飞行图像,请按标枪飞行先后顺序给下列图像编号 12分别画出下面三个几何体的主视图、左视图和俯视图 13如图所示的两幅图分别是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数请画出相应几何体的主视图和左视图 14. (1)用平面去
9、截一个长方体,能截出三角形、梯形吗?动手试一试 (2)用平面去截一个几何体,如果截面是长方形,你能想像出原来的几何体可能是什么吗?如果截面是三角形呢?圆呢? 15. 用平面去截一个正方体,最多有几种不同的截面,画出来,在同学间交流一下 16. 用平面去截一个五棱柱,能截出一个梯形吗?动手试试 17. 制作一个五棱柱,截一截,怎样才能截出三角形、长方形、五边形 试一试,看能否截出六边形、七边形、八边形? 答案: 1还可拼出如图所示的台灯等物体 2. 如图所示。铅锤类似于圆锥、圆锥是由三角形绕铀OO旋转而得到的,其余实物可照此法分析。 3(1)5,2,平的也有曲的;(2)1、曲的;(3)6, 3
10、4相同处:上下底面部是相同的多边形; 不同处:直棱柱的侧面都是矩形、斜棱柱的侧面有的是平行四边形。 5(1)5个面,其中3个侧面是长方形,两个底面是三角形,两个底面形状完全相同,三个侧面形状完全相同。 (2)共有9条棱,其中侧棱长均为bcm,底面棱长均为acm 6(1)长方体;(2)三棱柱;(3)圆柱;(4)圆锥 7.能 8. (1)六棱柱;(2)8个面,六边形和长方形;(3)相等;(4)6,相等 9得其表面展成一个平面图形,其面与面之间相连的棱有5条,因此需要剪开7条棱 14. (1)能;(2) 截面是长方形的几何体可能是正方体,长方体,棱柱,圆柱;截面是三角形的几何体可能是正方体,长方体,
11、棱柱,圆锥;截面是圆的几何体可能是圆柱,圆锥,球。 15. 5种,截面分别是三角形,长方形,正方形,五边形,六边形。 16能 17能截出六边形、七边形,但不能截出八边形。北京师大版七年级第一章检测题 1判断题: (1)所有棱柱的侧面都是长方形 ( ) (2)长方体的6个面相等 ( ) (3)长方体、正方体都是四棱柱 ( ) (4)一个棱柱至少有五个面 ( ) (5)组成扇形的曲线是弧 ( ) (6)直角三角形绕着它的一边所在直线旋转围成的几何体是一个圆锥 ( ) (7)长方形绕着它的一边所在的直线旋转围成的几何体是圆柱 ( ) (8)圆柱由三个面围成,其中两个平面,一个曲面 ( ) 2填空题:
12、 (1)圆锥的侧面展开图是_. (2)正方体有_ 个面、_个顶点、_条棱并且它们的棱都_,若一个正方体所有棱的和为36cm,则正方体的体积为_. (3)一个垂直于圆柱底面的平面去截圆柱,则它的截面一定是_. (4)若一个平面平行于棱柱的底面,去截此棱柱得到的截面为八边形,则该棱柱是_ 棱柱 (5) _ 的表面能展成如图1所示的平面图形 (6)把图2所示的平面图折叠,则围成的立体图形是_. 3选择题: (1)下列图形中不可能是几何体的是( ) (A)三棱柱 (B)圆柱 (C)圆形 (D)球 (2)下列图形中不是四棱柱的是( ) (3)下列说法中正确的是( ) (A)半圆可以分割成若干个扇形 (B
13、)底面是八边形的棱柱共有8个面 (C)四边形从一个顶点出发,分别与其余各点连结,可把四边形分成3个三角形 (D)截面是圆的几何体,不是圆柱,就是圆锥 4如图4是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图 5用一个平面去截正方体,画出它的截面分别是三角形、长方形、正方形、梯形 答案:1. (1) (2) (3) (4) (5) (6) (7) (8) 2. (1)扇形(2)6 8 12 相等 27cm3 (3)长方形(4)八(5)圆锥 (6)三棱柱 3. (1)C (2)B (3)A 4. 5. 说明:方法不惟一,图例仅供参考。 有
14、理数之一: 正数与负数及数轴。 本章是在小学学过的算术数的基础上引进了负数,从而使数域扩大到了有理数;并由此引出数轴,相反数,绝对值等概念以及有理数的运算法则。随着知识的不断深入,初二时我们的数域将扩大到实数,到了高中还会学习复数。这一章以及第一章是为我们以后的数学学习打下的基础,我们务必认真学好这一章的知识。 一、本讲的重点,难点和关键 重点:有理数特别是负数的意义以及数轴的意义。 难点:了解有理数特别是负数的意义;利用数轴进一步理解有理数的意义。 关键:利用数轴建立起来的数与形统一的观点。 二、知识要点: 1在小学学过的算术数包括正整数,正分数和0的基础上,由实际生活中具有相反意义的量,如
15、温度有零上,零下之分;帐目有收入,支出之分;买卖有盈亏之分等等。我们把这样具有相反意义的量分别用不同符号记号,以示区别,如当零上15C记作+15C,则零下5C记作-5C;收入20元记作+20元,则支出20元记作-20元等等。在这里,“+”号读作“正”号,“+20”读作“正20”;“-”号读作“负号”,“-10”读作“负10”。这样引入了负数和正数,由此建立了有理数的概念。正数前面的“+”号常省略不写,如+12可写成12。 整数:正整数,0和负整数统称为整数;如5,0,-3等等。 分数:正分数,负分数统称为分数。如,-3等等。 有理数:整数和分数统称为有理数。 2有理数的分类我们要弄清楚;其分类
16、如下: 或 3零既不是正数,也不是负数,它是正数和负数的分界。 4数轴的意义:规定了原点,正方向和单位长度的直线叫做数轴。 数轴的三要素是:原点,正方向和单位长度,三者缺一不可。我们必须能正确,规范地画出数轴。 对于给出的有理数,我们应能以刻度尺为工具,准确地在数轴上画出表示这些数的点,表示指定数的点要用笔涂成小圆黑点。比如给出-5,-4,0,0.5, 3等,能画一条数轴,并在数轴上面标出表示它们的点,如图: 反之,对于一条数轴上标出的点能说出它们表示的数。比如,指出下列图中A,B,C,D,E各点分别表示的有理数: 答:点A表示-3,点B表示-1,点C表示2,点D表示3,点E表示4。 5数轴的
17、建立使任何一个有理数都可以用数轴上的点表示出来,数轴上的点,有的也可以表示有理数,而点是最基本的几何图形,从而就建立了数与几何图形之间的关系,我们称其为“数形结合”。从而使有理数的大小直观化:数轴上表示的两个数,右边的数总比左边的数大。正数都大于0,负数都小于0;正数大于一切负数。 我们应该知道:任何一个有理数都可以用数轴上的点来表示;但数轴上的点并不都表示有理数,有的点还表示无理数,这个数轴也叫做“实数轴”,这些我们将在初二时学到。 三、例题: 例1把下列各数分别填在相应的大括号内:25,-6,-0.91, p, 3.14,-7, 0, -50, , 9. (1) 整数集合:25, -7,
18、0, -50, 9 . (2) 分数集合:-6, -0.91, 3.14, . (3) 正整数集合:25, 9 . (4) 负整数集合:-7, -50 . (5) 正分数集合:3.14, . (6) 负分数集合:-6, -0.91 . (7) 正有理数集合:25, 3.14, , 9 . (8) 负有理数集合:-6, -0.91, -7, -50 . (9) 有理数集合:25, -6, -0.91, 3.14, -7, 0, -50, , 9 . 注意:整数都可以看作是分母为1的分数,因此有理数一定能写成分数的形式,而p是无限不循环小数,它不能写成分数的形式,所以p不是有理数,p是无理数。 例
19、2判断正误,并说明理由。 (1)所有正数都是整数。 (2)在整数中除了正整数就是负整数。 (3)分数是有理数。 (4)正整数都是自然数。 (5)任何有理数都有倒数。 答:(1)不正确。因为正分数是正数但不是整数。如是正分数,但它不是整数。 (2)不正确。因为零是整数,但它既不是正整数也不是负整数。 (3)正确。因为整数和分数统称为有理数。 (4)正确。 (5)不正确。因为零不能做除数,故有理数零没有倒数。 例3下列各图中,哪些是数轴?为什么? 答:只有(3)是数轴。因为它是具有三要素:正方向,原点,单位长度的直线。 (1)不是数轴。因为它是曲线,不是直线。 (2)不是数轴。因为它没有长度单位。
20、 (4)不是数轴。因为它是线段,不是直线。 (5)不是数轴。因为它的方向反了。 (6)不是数轴。因为它没有规定正方向。 例4比较和的大小。 说明:比较两个数的大小是初中数学中重要内容之一,在前面我们已经谈到可以利用数轴来比较大小,但这不是唯一的方法。下面我们来研究另外的比较两个正数的大小的常用方法。 解:方法一:利用两数的差来判断,即两数a和b,若a-b0,,则ab;若a-b=0, 则a=b; 若 a-b0, 则a0. . 方法二:利用通分化为同分母分数,再比较分子的大小来判定。 =, =,且 180 169. . (*)方法三:利用两数的比,看比值大于1还是小于1来判断,即若1,则ab;若1
21、, 则a1, . 例5当x分别为3,7,10时,比较5x-35与0的大小。 解:当x=3时,5x-35=53-35=15-35=-200, 当x=3时, 5x-350, 当x=10时,5x-350. 说明:通过此题我们应进一步理解当代数式5x-35中的字母x取不同的值时,对应代数式的值也不同。 四、练习: (一)用正数,负数填空: (1)支出100元记作_元,收入150元记作_元。 (2)盈利800元记作_元,亏损600元记作_元。 (3)电梯上升5米记作_米,下降3米记作_米。 (4)王淼向东走5米,记作+5米,那么他走了_米,则表示他向西走了8米。 (5)足球比赛胜2场记作_场,负1场记作
22、_场。 (6)海拔_米,相当于海面上高度100米,海拔_米相当于海面下300米。 (二)判断正误: (1)所有的整数都是正数。 ( ) (2)正数和负数统称有理数。 ( ) (3)零不是正数,也不是负数,但是整数。 ( ) (4)没有最大的正整数,也没有最大的负整数。 ( ) (5)在有理数中,不是正数的数一定是负数。 ( ) (6)任何一个有理数都可以在数轴上找到和它对应的点。 ( ) (7)数轴上任意一点都表示一个有理数. ( ) (8)-3-2 ( )(9)-100 ( )(10)a为有理数,则3a一定大于2a。 ( ) (三)填空: (1)正整数集合与负整数集合合并在一起构成的集合是_
23、集合。 (2)既不是正数,也不是负数的数是_;是正数而不是整数的数是_。 (3)最大的负整数是_,最小的正整数是_。 (4)大于-3.1的负整数是_,小于4.3的正整数是_。 (5)大于-5而不大于2的所有的整数是_。 (6)写出满足条件-3x 2.4-4.6-19.4 真题实战: 1下列各数中,负数是( ) A(3)0BC(3)2D32 答案:B 数轴 考点分析: 1了解数轴的概念和数轴的画法。 2会以刻度尺为工具用数轴上的点表示整数或分数。 3掌握用数轴比较有理数大小的方法,会用不等号连接两个或两个以上不同的有理数。 考点讲解: 1数轴能够把我们所学过的数直观地、形象地表示出来,这是研究数
24、学的一种“数形结合”的重要方法。画数轴一般先取向右为正方向,原点和单位长度则由我们具体情况灵活选定它们位置和大小。规定了原点,正方向和单位长度的直线才叫做数轴,数轴的三要素缺一不可。 2数轴的应用(1)掌握数轴的画法,要求规范、美观。(2)能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。(3)会利用数轴比较有理数的大小,并理解和熟记有理数大小比较的法则:正数都大于;负数都小于;正数大于一切负数。这些是以后进一步学习其他知识的重要基础。 考题例析: 1一家三人(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠”乙旅行团告知:“家庭旅游可按团体票计价,
25、即每人均按全价的收费”,若这两家旅行社每人的原票价相同,那么,优惠条件是( ) (A)甲比乙更优惠(B)乙比甲更优惠(C)甲与乙相同(D)与原票价有关 考点:有理数大小的比较 评析:本题直接运算比较,易知甲用钱为原票价的,乙用钱为原票价的,将与比较易知大小,即可作出判定,从而选出正确选项。 答案:B 2、在数轴上表示数2的点与表示数-5的点之间的距离是_。 考点:数轴 评析:距离为正的,在数轴上表示的两个数2与-5,距原点的距离分别为2和5,所以所求距离为2+5=7 答案:7。 3、在数轴上表示的两个数,右边的数总比左边的数_。 考点:数轴 答案:大。 4、数a、b在数轴上的位置如图,则b_a
26、(填“”或“”)。 考点:利用数轴比较大小 评析:因为数轴上原点左边的数小于0,a0,ba, 答案: 5(杭州市)-5的相反数是( ) A、-5B、C、D、5 考点:相反数的求法 评析:只有符号不同的两个数互为相反数,即数a的相反数是- a,可知-5的相反数是5 真题实战: 1(河北省)-的相反数是 2(江苏南京)-2的相反数是( ) A、-2B、2C、-D、 3(扬州市)3的相反数是 的倒数是 4(厦门市)的相反数是 5(益阳市)如果a=3,则- a = 6(黑龙江省)-2001的倒数的相反数是 7(福建龙岩市)-的相反数是 8(北京崇文区) -6的相反数是( ) A、6 B、-6 C、 D
27、、- 9(陕西省)如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于( ) A、-8 B、8 C、-9 D、9 答案:1、2、B3、-3,34、-5、-36、7、8、A 9.D(提示:由相反数的几何意义可知应为相反数的两数之和是0,所以可列方程2(x+3)+3(1-x)=0,运用前面学过的解方程的方法,解此方程得:x=9所以选D,也可以将给出的四个选项代入验证:分别代入两个代数式看求得的值是否互为相反数) 10.若ab0,将1,1-a,1-b这三个数按由小到大的顺序用“”连接起来: 。 答案:11-b-7。 12.与3.14的大小关系是_3.14 答案: 13.下列说法正确的是( )
28、 A 所有的有理数都可以用数轴上的点表示; B 数轴上的每一个点都表示一个整数; C 规定了正方向和单位长度的一条直线叫做数轴; D 在同一数轴上,单位长度可以不统一。 答案:A 14.下列说法正确的是( ) A 没有最大的正数,但有最大的负数; B 没有最小的负数,但有最小的正数; C 有最大的负整数,也有最小的正整数; D 有最小的有理数是0。 答案:C 反馈练习1.下列说法中,正确的是 ( ) (A)正整数和正分数统称正有理数 (B)正整数和负整数统称整数 (C)正整数、正分数、负整数、负分数统称有理数 (D)零不是整数 2.关于数“0”,以下各种说法中,错误的是 ( ) (A)0是整数
29、 (B)0是偶数 (C)0是正整数 (D)0既不是正数也不是负数 3.下列各语句中,正确的一个是 ( ) (A)整数就是自然数和零 (B)正整数和负整数统称整数 (C)整数不能分成奇数和偶数两类 (D)整数和分数统称有理数 4.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是 ( ) (A)前进-18米的意义是后退18米 (B)收入-4万元的意义是减少4万元 (C)盈利的相反意义是亏损 (D)公元-300年的意义是公元后300年 5.下列各判断句中,错误的一个是 ( ) (A)有限小数和无限循环小数都是有理数 (B)圆周率不是有理数 (C)正有理数和负有理数统称有理数 (D)任意
30、一个有理数都可以写成分数形式 6.若有理数mn,在数轴上的点M表示数m,点N表示数n,那么 ( ) (A)点M在点N右边 (B)点M在点N左边 (C)点M在原点的右边,点N在原点左边 (D)点M和点N都在原点的右边,且点M更右些 7.一辆汽车从甲站出发向东行驶50千米,然后再向西行驶20千米,此时汽车的位置是 ( ) (A)甲站的东边70千米处 (B)甲站的西边20千米处 (C)甲站的东边30千米处 (D)甲站的西边30千米处 8.在数轴上A点和B点所表示的数分别为-2和1、若使A点表示的数是B点表示的数的3倍,应将A点 ( ) (A)向左移动5个单位 (B)向右移动5个单位 (C)向右移动4
31、个单位 (D)向左移动1个单位或向右移动5个单位 9.比较-1,-0.5, 0,0.01的大小,正确的是()。 (A)-1-0.500.01 (B)-0.5-100.01 (C)-1-0.50.010 (D)0-0.5-1a0c (B)ab0c (C)ba0c (D)abc, 所以-|-5.6| -5-5.6。 (两个负数比较大小,绝对值大的反而小)。 例4比较m与|m|的大小。 分析:|m|0, 而m为有理数,它可能为正数,负数或0,因此我们必须分三种情况进行讨论,数学上称这种思想方法为“分类讨论”。 解:当m0时,|m|=m, m=|m|, 当m0, m|m|。 综上所述,当m0时,m=|m|; 当m0时, m|m|。 例5