半导体物理复习试题及考试模拟题(DOC 24页).doc

上传人(卖家):2023DOC 文档编号:5543289 上传时间:2023-04-24 格式:DOC 页数:24 大小:185KB
下载 相关 举报
半导体物理复习试题及考试模拟题(DOC 24页).doc_第1页
第1页 / 共24页
半导体物理复习试题及考试模拟题(DOC 24页).doc_第2页
第2页 / 共24页
半导体物理复习试题及考试模拟题(DOC 24页).doc_第3页
第3页 / 共24页
半导体物理复习试题及考试模拟题(DOC 24页).doc_第4页
第4页 / 共24页
半导体物理复习试题及考试模拟题(DOC 24页).doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、 . . . . 第一篇 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 解:在一定温度下,价带电子获得足够的能量(Eg)被激发到导带成为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。1-2、 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致

2、禁带变宽。因此,Ge、Si的禁带宽度具有负温度系数。1-3、 试指出空穴的主要特征。解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的集体运动状态,是准粒子。主要特征如下:A、荷正电:+q;B、空穴浓度表示为p(电子浓度表示为n);C、EP=-EnD、mP*=-mn*。1-4、 简述Ge、Si和GaAS的能带结构的主要特征。解:(1) Ge、Si: a)Eg (Si:0K) = 1.21eV;Eg (Ge:0K) = 1.170eV; b)间接能隙结构c)禁带宽度Eg随温度增加而减小; (2) GaAs: a)Eg(300K)= 1.428eV,Eg (0K) = 1.522eV

3、;b)直接能隙结构;c)Eg负温度系数特性: dEg/dT = -3.9510-4eV/K;1-5某一维晶体的电子能带为其中E0=3eV,晶格常数a=510-11m。求:(1)能带宽度;(2)能带底和能带顶的有效质量。 解:(1) 由题意得:(2)答:能带宽度约为1.1384Ev,能带顶部电子的有效质量约为1.925x10-27kg,能带底部电子的有效质量约为-1.925x10-27kg。第二篇 半导体中的杂质和缺陷能级习题2-1、什么叫浅能级杂质?它们电离后有何特点?解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,

4、并同时向导带提供电子或向价带提供空穴。2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。施主电离成为带正电离子(中心)的过程就叫施主电离。施主电离前不带电,电离后带正电。例如,在Si中掺P,P为族元素,本征半导体Si为族元素,P掺入Si中后,P的最外层电子有四个与Si的最外层四个电子配对成为共价电子,而P的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。这个过程就是施主电离。n型半导体的能带图如图所示:其费米能级位于禁带上方2-3、什

5、么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。受主电离成为带负电的离子(中心)的过程就叫受主电离。受主电离前带不带电,电离后带负电。例如,在Si中掺B,B为族元素,而本征半导体Si为族元素,P掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共价电子,而B倾向于接受一个由价带热激发的电子。这个过程就是受主电离。p型半导体的能带图如图所示:其费米能级位于禁带下方2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。解

6、:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。掺杂半导体又分为n型半导体和p型半导体。例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.51010cm-3。当在Si中掺入1.01016cm-3 后,半导体中的电子浓度将变为1.01016cm-3,而空穴浓度将近似为2.25104cm-3。半导体中的多数载流子是电子,而少数载流子是空穴。2-5、两性杂质和其它杂质有何异同?解:两性杂质是指在半导体中既可作施主又可作受主的杂质。如-族GaAs中掺族Si。如果Si替位族As,则Si为施主;如果Si替位族Ga,则Si为受主。所掺入的杂质具体是起施主还是受主与工艺有关。2-6、深能级杂质

7、和浅能级杂质对半导体有何影响?解:深能级杂质在半导体中起复合中心或陷阱的作用。浅能级杂质在半导体中起施主或受主的作用。2-7、何谓杂质补偿?杂质补偿的意义何在?当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。第三篇 半导体中载流子的统计分布3-1、对于某n型半导体,试证明其费米能级在其本征半导体的费米能级之上。即EFnEFi。证明:设nn为n型半导体的电子浓度,ni为本征半导体的电子浓度。显然 nn ni即得证。3-2、试分别定性定量说明:(1) 在一定的温度下,对本征材料而言

8、,材料的禁带宽度越窄,载流子浓度越高;(2) 对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。3-2、解:(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。由公式:也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而增加。由公式可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。3-3、若两块Si样品中的电子浓度分别为2.251010cm-3和6.81016cm-3,试分别求出

9、其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。假如再在其中都掺入浓度为2.251016cm-3的受主杂质,这两块样品的导电类型又将怎样?3-3、解:由 得: 可见,又因为 ,则假如再在其中都掺入浓度为2.251016cm-3的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p型半导体,第二种半导体补偿后将近似为本征半导体。答:第一种半导体中的空穴的浓度为1.1x1010cm-3,费米能级在价带上方0.234eV处;第一种半导体中的空穴的浓度为3.3x103cm-3,费米能级在价带上方0.331eV处。掺入浓度为2.251016cm-3的受主杂质后,第一种半导体补偿后将变为p

10、型半导体,第二种半导体补偿后将近似为本征半导体。3-4、含受主浓度为8.0106cm-3和施主浓度为7.251017cm-3的Si材料,试求温度分别为300K和400K时此材料的载流子浓度和费米能级的相对位置。3-4、解:由于杂质基本全电离,杂质补偿之后,有效施主浓度则300K时,电子浓度 空穴浓度 费米能级为:在400K时,根据电中性条件 和 得到:费米能级为:答:300K时此材料的电子浓度和空穴浓度分别为7.25 x1017cm-3和3.11x102cm-3,费米能级在价带上方0.3896eV处;400 K时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm-3和1.3795

11、x108cm-3,费米能级在价带上方0.08196eV处。3-5、试分别计算本征Si在77K、300K和500K下的载流子浓度。3-5、解:假设载流子的有效质量近似不变,则所以,由 ,有: 答:77K下载流子浓度约为1.15910-80cm-3,300 K下载流子浓度约为3.5109cm-3,500K下载流子浓度约为1.6691014cm-3。3-6、Si样品中的施主浓度为4.51016cm-3,试计算300K时的电子浓度和空穴浓度各为多少?解:在300K时,因为ND10ni,因此杂质全电离n0=ND4.51016cm-3答: 300K时样品中的的电子浓度和空穴浓度分别是4.51016cm-3

12、和5.0103cm-3。3-7、某掺施主杂质的非简并Si样品,试求EF=(EC+ED)/2时施主的浓度。解:由于半导体是非简并半导体,所以有电中性条件n0=ND+答:ND为二倍NC。第四篇半导体的导电性习题4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。4-1、解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的

13、是晶格振动散射,所以温度越高,迁移率越低。4-2、何谓迁移率?影响迁移率的主要因素有哪些? 4-2、解:迁移率是单位电场强度下载流子所获得的漂移速率。影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。4-3、试定性分析Si的电阻率与温度的变化关系。4-3、解:Si的电阻率与温度的变化关系可以分为三个阶段:(1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。(2) 温度进一步增加(含室温),电阻率随温度升

14、高而升高。在这一温度围,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。(3) 温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。4-4、证明当np,且电子浓度,空穴浓度时半导体的电导率有最小值,并推导的表达式。4-4、证明: 得证。4-5、0.12kg的Si单晶掺有3.010-9kg的Sb,设杂质全部

15、电离,试求出此材料的电导率。(Si单晶的密度为2.33g/cm3,Sb的原子量为121.8)4-5、解:故材料的电导率为:答:此材料的电导率约为24.04-1cm-1。第五篇 非平衡载流子习题5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在?5-1、解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。通常所指的非平衡载流子是指非平衡少子。热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态,跃迁引起的产生、复合不会产生宏观效应。在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。5-2、漂移运动和扩散运动

16、有什么不同?5-2、解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布引起的。5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?5-3、解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?5-4、答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而

17、扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。 平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。5-5、证明非平衡载流子的寿命满足,并说明式中各项的物理意义。证明:则在单位时间减少的非平衡载流子数=在单位时间复合的非平衡载流子数,即在小注入条件下,为常数,解方程(1),得到式中,p(0)为t=0时刻的非平衡载流子浓度。此式表达了非平衡载流子随时间呈指数衰减的规律。 得证。5-6

18、、导出非简并载流子满足的爱因斯坦关系。5-6、证明:假设这是n型半导体,杂质浓度和建电场分布入图所示E稳态时,半导体部是电中性的,Jn=0即 对于非简并半导体这就是非简并半导体满足的爱因斯坦关系。 得证。5-7、间接复合效应与陷阱效应有何异同?答:间接复合效应是指非平衡载流子通过位于禁带中特别是位于禁带中央的杂质或缺陷能级Et而逐渐消失的效应,Et的存在可能大大促进载流子的复合;陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级Et中,使在Et上的电子或空穴的填充情况比热平衡时有较大的变化,从引起np,这种效应对瞬态过程的影响很重要。此外,最有效的复合中心在禁带中央,而最有效的陷阱能级在费

19、米能级附近。一般来说,所有的杂质或缺陷能级都有某种程度的陷阱效应,而且陷阱效应是否成立还与一定的外界条件有关。5-8、光均匀照射在6的n型Si样品上,电子-空穴对的产生率为41021cm-3s-1,样品寿命为8s。试计算光照前后样品的电导率。解:光照前光照后 p=G=(41021)(810-6)=3.21017 cm-3则答:光照前后样品的电导率分别为1.167-1cm-1和3.51-1cm-1。5-9、证明非简并的非均匀半导体中的电子电流形式为。5-9、证明:对于非简并的非均匀半导体由于 则同时 利用非简并半导体的爱因斯坦关系,所以得证。5-10、假设Si中空穴浓度是线性分布,在4m的浓度差

20、为21016cm-3,试计算空穴的扩散电流密度。解:答:空穴的扩散电流密度为7.1510-5A/m2。5-11、试证明在小信号条件下,本征半导体的非平衡载流子的寿命最长。证明:在小信号条件下,本征半导体的非平衡载流子的寿命而 所以 本征半导体的非平衡载流子的寿命最长。 得证。第六篇 -半导体表面与MIS结构题解1. 在由n型半导体组成的MIS结构上加电压Vg,分析其表面空间电荷层状态随VG变化的情况,并解释其CV曲线。2.试述影响平带电压VFB的因素。3. 解释什么是表面积累、表面耗尽和表面反型?7-1、解:又因为 7-3、解:(1) 表面积累:当金属表面所加的电压使得半导体表面出现多子积累时

21、,这就是表面积累,其能带图和电荷分布如图所示:(2) 表面耗尽:当金属表面所加的电压使得半导体表面载流子浓度几乎为零时,这就是表面耗尽,其能带图和电荷分布如图所示:(3)当金属表面所加的电压使得半导体表面的少子浓度比多子浓度多时,这就是表面反型,其能带图和电荷分布如图所示:7-3、解:理想MIS结构的高频、低频电容-电压特性曲线如图所示;其中AB段对应表面积累,C到D段为表面耗尽,GH和EF对应表面反型。7-4、解:使半导体表面达到强反型时加在金属电极上的栅电压就是开启电压。这时半导体的表面势7-5、答:当MIS结构的半导体能带平直时,在金属表面上所加的电压就叫平带电压。平带电压是度量实际MI

22、S结构与理想MIS结构之间的偏离程度的物理量,据此可以获得材料功函数、界面电荷及分布等材料特性参数。7-6、解:影响MIS结构平带电压的因素分为两种:(1)金属与半导体功函数差。例如,当WmWs时,将导致C-V特性向负栅压方向移动。如图恢复平带在金属上所加的电压就是(2)界面电荷。假设在SiO2中距离金属- SiO2界面x处有一层正电荷,将导致C-V特性向负栅压方向移动。如图:恢复平带在金属上所加的电压就是:在实际半导体中,这两种因素都同时存在时,所以实际MIS结构的平带电压为一、选择填空(含多项选择)1. 与半导体相比较,绝缘体的价带电子激发到导带所需的能量()A. 比半导体的大 B. 比半

23、导体的小 C. 与半导体的相等2. 室温下,半导体Si掺硼的浓度为1014cm3,同时掺有浓度为1.11015cm3的磷,则电子浓度约为(),空穴浓度为(),费米能级();将该半导体升温至570K,则多子浓度约为(),少子浓度为(),费米能级()。(已知:室温下,ni1.51010cm3,570K时,ni21017cm3) A. 1014cm3 B. 1015cm3 C. 1.11015cm3 D. 2.251015cm3 E. 1.21015cm3 F. 21017cm3 G. 高于Ei H. 低于Ei I. 等于Ei3. 施主杂质电离后向半导体提供(),受主杂质电离后向半导体提供(),本征

24、激发后向半导体提供()。 A. 空穴 B. 电子4. 对于一定的半导体材料,掺杂浓度降低将导致禁带宽度(),本征流子浓度(),功函数()。 A. 增加 B. 不变 C. 减少5. 对于一定的n型半导体材料,温度一定时,较少掺杂浓度,将导致()靠近Ei。 A. Ec B. Ev C. Eg D. Ef6. 热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与()有关,而与()无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度7. 表面态中性能级位于费米能级以上时,该表面态为()。A. 施主态 B. 受主态 C. 电中性8. 当施主能级Ed与费米能级Ef相等时,电离施主的浓度为施

25、主浓度的()倍。 A. 1 B. 1/2 C. 1/3 D. 1/49. 最有效的复合中心能级位置在()附近;最有利陷阱作用的能级位置在()附近,常见的是()的陷阱 A. Ea B. Ed C. E D. Ei E. 少子 F. 多子10. 载流子的扩散运动产生()电流,漂移运动长生()电流。A. 漂移 B. 隧道 C. 扩散11. MIS结构的表面发生强反型时,其表面的导电类型与体材料的(),若增加掺杂浓度,其开启电压将()。 A. 相同 B. 不同 C. 增加 D. 减少二、思考题1. 简述有效质量与能带结构的关系。2. 为什么半导体满带中的少量空状态可以用带有正电荷和具有一定质量的空穴来

26、描述?3. 分析化合物半导体PbS中S的间隙原子是形成施主还是受主?S的缺陷呢?4. 说明半导体中浅能级杂质、深能级杂质的作用有何不同?5. 为什么Si半导体器件的工作温度比Ge半导体器件的工作温度高?你认为在高温条件下工作的半导体应满足什么条件?6. 工厂生产超纯Si的室温电阻率总是夏天低,冬天高。试解释其原因。7. 试解释强电场作用下GaAs的负阻现象。8. 稳定光照下,半导体中的电子和空穴浓度维持不变,半导体处于平衡状态下吗?为什么?9. 爱因斯坦关系是什么样的关系?有何物理意义?10. 怎样才能使得n型硅与金属铝接触才能分别实现欧姆接触和整流接触?1. 答案:(A)2. 答案:(B),

27、(D),(G),(F),(F),(I)3. 答案:(B),(A),(A,B)4. 答案:(B,A),(B,C),(C)5. 答案:(D)6. 答案:(C,D),(A,B)7. 答案:(A)8. 答案:(C)9.答案:(C),(E)10. 答案:(C),(A)11. 答案:(B),(C)半导体物理重点难点 第一章 半导体中的电子状态 1、Si和GaAs的晶体结构 2、Ge、Si和GaAs的能带结构 3、本征半导体及其导电机构、空穴 第二章 半导体中的杂质和缺陷 l、本征激发与本征半导体的特征 2、杂质半导体与杂质电离 第三章 半导体中载流子的统计分布 1、热平衡态时非简并半导体中载流子的浓度分布

28、 2、费米能级EF的相对位置。 第四章 半导体中的导电性 1、迁移率 2、散射影响迁移率的本质因素 3、电导率 4、弱电场下电导率的统计理论 第五章 非平衡载流子 1、非平衡载流子的产生 2、非平衡载流子的复合 3、非平衡载流子的运动规律 4、扩散方程 5、爱因斯坦关系 6、连续性方程 第六章 金属和半导体接触 1、阻挡层与反阻挡层的形成2、肖特基势垒的定量特性 3、欧姆接触的特性 4、少子的注入 第七章 半导体表面与MIS结构 1、表面电场效应 2、理想与非理想MIS结构的C-V特性 3、Si-SiO2系统的性质4、表面电导 一、 选择填空(含多选题)(25分)1.如果半导体中电子浓度等于空

29、穴浓度,则该半导体以( )导电为主; .如果半导体中电子浓度大于空穴浓度,则该半导体以( )导电为主; .如果半导体中电子浓度小于空穴浓度,则该半导体以( )导电为主。A、复合中心 B、本征 C、陷阱 E、受主 F、空穴 G、施主 H、电子 I、非本征2. 电子是带( )电的( );空穴是带( )电的( )粒子。A、正 B、负 C、零 D、准粒子 E、粒子3. 对非简并半导体,当杂质浓度增加时,半导体中的载流子遭受的散射( ),这种散射称为( );A、不变 B、减少 C、增加D、声学波声子散射 E、光声学波声子散射 F、中性杂质散射 G、电离杂质散射4. 当入射光子的能量大于半导体的禁带宽度时

30、,将通过( )激发产生( )载流子,使得半导体的电阻率( ),电子亲和势( )。A、施主 B、受主 C、本征 E、非本征 F、平衡 D、非平衡 E、增加 F、减小 G、不变5. 激子带( )电。A、正 B、负 C、零 6. 当Au掺入Si中时,它是( )能级,在半导体中起的是( )的作用; 当B掺入Si中时,它是( )能级,在半导体中起的是( )的作用。A、施主 B、受主 C、深 D、浅 E、复合中心 F、陷阱 7. 当温度升高时,载流子的平均自由程( ),其迁移率( ),其复合率( )。A、增加 B、减小 C、不变D、p型半导体 E、n型半导体 F、本征半导体8.有一Si样品,已知其中平衡电

31、子浓度为1017cm-3,则平衡空穴的浓度近似为( ),由此可知这是( )半导体。A、1017cm-3 B、1010cm-3 C、103cm-3 D、p型半导体 E、n型半导体 F、本征半导体9. 对电子而言,其扩散电流的方向与电子扩散方向( ),其漂移电流的方向与所加外电场的方向( )。A、相同 B、相反二、证明:已知热平衡条件下导带电子浓度n和价带空穴浓度p的表达式为:其中Nc和Nv分别为导带和价带的有效态密度, Ec和Ev分别为导带底和价带顶的能量。(1)求出本征载流子浓度ni和本征费米能级Ei表达式。(4分)(2)论证n,p与ni , EF之间有如下关系(4分)三、 试分别用能带图表征

32、直接复合和间接复合的复合机制,并说明这两种复合机制的异、同。(4分)四、 简答题:1. 半导体中的电流,是否多数载流子电流一定比少数载流子电流大得多?为什么?(3分)2. 半导体中载流子的漂移运动与扩散运动,分别用什么物理量来描述其快慢?单位分别是什么?其间有何简单的关系?(3分)3. 什么是Fermi能级?什么是准Fermi能级?它们的适用条件分别是什么?(3分)五、(1)n-型半导体构成的金属-半导体接触有几种电学特性?试给出其I-V曲线。在何种条件下形成相应接触?;(3分)(2)如果减小该半导体的功函数,则零偏压下半导体的势垒高度如何变化?半导体的势垒厚度又如何变化?要求画出变化前后的能带图加以对比(3分)六、对于实际MIS结构1、 试根据下图判断半导体的导电类型,并分别指出AB段、C点和DE段对应的半导体表面状态;(5分)C/C0 A B C D E V2、 画出C-V曲线中DE段对应的半导体表面的能带图;(5分)3、 什么是平带电压?试写出平带电压表达公式,并指出式中各项产生的原因;(4分)4、 如果减少半导体的掺杂浓度,C-V曲线将如何变化?为什么?(4分) . . . . .

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(半导体物理复习试题及考试模拟题(DOC 24页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|