人教版高中数学椭圆专题复习资料.doc

上传人(卖家):2023DOC 文档编号:5543600 上传时间:2023-04-24 格式:DOC 页数:7 大小:943KB
下载 相关 举报
人教版高中数学椭圆专题复习资料.doc_第1页
第1页 / 共7页
人教版高中数学椭圆专题复习资料.doc_第2页
第2页 / 共7页
人教版高中数学椭圆专题复习资料.doc_第3页
第3页 / 共7页
人教版高中数学椭圆专题复习资料.doc_第4页
第4页 / 共7页
人教版高中数学椭圆专题复习资料.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、高中数学椭圆的专题复习椭圆知识点梳理1. 椭圆的定义:1,2(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时1()。方程表示椭圆的充要条件是什么?(ABC0,且A,B,C同号,AB)。2. 椭圆的几何性质:(1)椭圆(以()为例):范围:;焦点:两个焦点;对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;准线:两条准线; 离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。通径2.点与椭圆的位置关系:(1)点在椭圆外;(2)点在椭圆上1;(3)点在椭圆内3直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交;(2)相切:直线与椭圆相切; (3)相离

2、:直线与椭圆相离; 如:直线ykx1=0与椭圆恒有公共点,则m的取值范围是_(答:1,5)(5,+);4、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为_(答:10/3);(2)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_(答:);5、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:,当即为短轴端点时,的最大值为bc;6、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐

3、标,则,若分别为A、B的纵坐标,则,若弦AB所在直线方程设为,则。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。7、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=;如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);(2)已知直线y=x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x2y=0上,则此椭圆的离心率为_(答:);(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:); 特别提醒:因为是直线与圆

4、锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验! 椭圆知识点1如何确定椭圆的标准方程? 任何椭圆都有一个对称中心,两条对称轴。当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式。此时,椭圆焦点在坐标轴上。确定一个椭圆的标准方程需要三个条件:两个定形条件;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型。 2椭圆标准方程中的三个量的几何意义椭圆标准方程中,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的。分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:,且。可借助右图理解记忆: 显然:恰构成一个直角三

5、角形的三条边,其中a是斜边,b、c为两条直角边。3如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看,的分母的大小,哪个分母大,焦点就在哪个坐标轴上。 4方程是表示椭圆的条件方程可化为,即,所以只有A、B、C同号,且AB时,方程表示椭圆。当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。5求椭圆标准方程的常用方法: 待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数的值。其主要步骤是“先定型,再定量”;定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程。6共焦点的椭圆标准方程形式上的差

6、异共焦点,则c相同。与椭圆共焦点的椭圆方程可设为,此类问题常用待定系数法求解。7判断曲线关于轴、轴、原点对称的依据: 若把曲线方程中的换成,方程不变,则曲线关于轴对称; 若把曲线方程中的换成,方程不变,则曲线关于轴对称; 若把曲线方程中的、同时换成、,方程不变,则曲线关于原点对称。8如何求解与焦点三角形PF1F2(P为椭圆上的点)有关的计算问题? 思路分析:与焦点三角形PF1F2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算解题。将有关线段,有关角 ()结合起来,建立、之间的关系. 9如何计算椭圆的扁圆程度与离心率的关系? 长轴与短轴的长短关

7、系决定椭圆形状的变化。离心率,因为,用表示为。显然:当越小时,越大,椭圆形状越扁;当越大,越小,椭圆形状越趋近于圆。椭 圆题型1:椭圆定义的运用例1、已知为椭圆的两个焦点,过的直线交椭圆于A、B两点若,则_。例2、椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A、B是它的焦点,长轴长为2a,焦距为2c,静放在点A的小球(小球的半径不计),从点A沿直线出发,经椭圆壁反弹后第一次回到点A时,小球经过的路程是 例3、如果方程表示焦点在x轴的椭圆,那么实数k的取值范围是_.例4、已知为椭圆上的一点,分别为圆和圆上的点,则

8、的最小值为 题型2: 求椭圆的标准方程 例1、求满足下列各条件的椭圆的标准方程. (1) 经过两点、; (2)经过点(2,3)且与椭圆具有共同的焦点. (3)一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为4.题型3:求椭圆的离心率(或范围)例1、中,若以为焦点的椭圆经过点,则椭圆的离心率为 .例2、过椭圆的一个焦点作椭圆长轴的垂线交椭圆于P,若 为等腰直角三角形,则椭圆的离心率为 题型4:椭圆的其他几何性质的运用(范围、对称性等)例1、已知实数满足,则的范围为 例2、已知P是椭圆上一点,是椭圆的两个焦点,求的最大值与最小值例3、已知点是椭圆()上两点,且,则= 例4、如上

9、图,把椭圆的长轴分成8等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则_题型5:焦点三角形问题例1、已知为椭圆的两个焦点,p为椭圆上的一点,已知为一个直角三角形的三个顶点,且,求的值;例2、已知为椭圆C:的两个焦点,在C上满足的点的个数为 例3、若为椭圆的两个焦点,p为椭圆上的一点,当为钝角时,点P横坐标的取值范围为 例4、已知椭圆的焦点是,且经过点(1,) 求椭圆的方程; 设点P在椭圆上,且,求cos.题型6: 三角代换的应用例1、椭圆上的点到直线l:的距离的最小值为_例2、椭圆的内接矩形的面积的最大值为 题型7:直线与椭圆的位置关系的判断例1、当为何值时,直线与椭圆

10、相交?相切?相离?例2、若直线与椭圆恒有公共点,求实数的取值范围; 题型8:弦长问题例3求直线被椭圆所截得的弦长. 例4、已知椭圆的左右焦点分别为F1,F2,若过点P(0,-2)及F1的直线交椭圆于A,B两点,求ABF2的面积; 题型9:中点弦问题例5、求以椭圆内的点A(2,-1)为中点的弦所在的直线方程。例6、中心在原点,一个焦点为的椭圆截直线 所得弦的中点横坐标为,求椭圆的方程例7、椭圆 ,与直线 相交于 、 两点, 是 的中点若 ,斜率为 (O为原点),求椭圆的方程题型10:椭圆与向量、解三角形的交汇问题例6、设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称,为坐标原

11、点,若,且,求点的轨迹方程;15. 如图,在RtABC中,CAB=90,AB=2,AC=。一曲线E过点C,动点P在曲线E上运动,且保持|PA|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。 (1)建立适当的坐标系,求曲线E的方程; (2)设直线l的斜率为k,若MBN为钝角,求k的取值范围。基础巩固训练1. 如图,椭圆中心在原点,F是左焦点,直线与BF交于D,且,则椭圆的离心率为 2.设为椭圆的两焦点,P在椭圆上,当面积为1时,的值为 3.椭圆的一条弦被平分,那么这条弦所在的直线方程是 4.在中,若以为焦点的椭圆经过点,则该椭圆的离心率 5. 若为椭圆的两个焦点,P为椭圆上一点,若,

12、则此椭圆的离心率为 6.在平面直角坐标系中,椭圆的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 综合提高训练7、已知椭圆与过点A(2,0),B(0,1)的直线l有且只有一个公共点T,且椭圆的离心率求椭圆方程;8.已知A、B分别是椭圆的左右两个焦点,O为坐标原点,点P在椭圆上,线段PB与y轴的交点M为线段PB的中点。(1)求椭圆的标准方程; (2)点C是椭圆上异于长轴端点的任意一点,对于ABC,求的值。9.已知长方形ABCD, AB=,BC=1.以AB的中点为原点建立如图8所示的平面直角坐标系.()求以A、B为焦点,且过C、D两点的椭圆的标准方程;OABCD图8()过点P(0,2)的直线交()中椭圆于M,N两点,是否存在直线,使得以弦MN为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(人教版高中数学椭圆专题复习资料.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|