1、二次函数与其他函数的综合测试题一、 选择题:(每小题3分,共45分)1已知h关于t的函数关系式为,(g为正常数,t为时间),则函数图象为( ) (A) (B) (C) (D)2在地表以下不太深的地方,温度y()与所处的深度x(km)之间的关系可以近似用关系式y35x20表示,这个关系式符合的数学模型是( )(A)正比例函数 (B)反比例函数(C)二次函数 (D)一次函数3(A)m0 (B)m0 (C)m (D)m 4函数y = kx + 1与函数在同一坐标系中的大致图象是()(A)(B)(C)(D)5下列各图是在同一直角坐标系内,二次函数与一次函数yaxc的大致图像,有且只有一个是正确的,正确
2、的是( ) (A) (B) (C) (D)6抛物线的顶点坐标是()A(1,1)B(1,1)C(1,1)D(1,1)7函数y=ax+b与y=ax2+bx+c的图象如右图所示,则下列选项中正确的是() A ab0, c0 B ab0 C ab0, c0 D ab0, c08已知a,b,c均为正数,且k=,在下列四个点中,正比例函数 的图像一定经过的点的坐标是( ) A(l,) B(l,2) C(l,) D(1,1)9如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过P作EFAC,与平行四边形的两条边分别交于点E,F设BP=x,EF=y,则能反映y与x之间关系的图象为( )10
3、如图4,函数图象、的表达式应为()(A),(B), ,(C),(D),11张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系( )12二次函数y=x2-2x+2有 ( )A 最大值是1 B最大值是2 C最小值是1 D最小值是213设A(x1,y1)、B(x2,y2)是反比例函数y=图象上的两点,若x1x20,则y1与y2之间的关系是( )A y2 y10 B y1 y2 y10 D y1 y2014若抛物线y=x2-6x+c的顶点在x轴上,则c的值是 ( )A 9 B 3 C-9 D 0x第3题
4、图yPDO15二次函数的图象与轴交点的个数是()A0个B1个C2个D不能确定二、 填空题:(每小题3分,共30分)1完成下列配方过程: ;2写出一个反比例函数的解析式,使它的图像不经过第一、第三象限:_3如图,点P是反比例函数上的一点,PD轴于点D,则POD的面积为 ;4、已知实数m满足,当m=_时,函数的图象与x轴无交点5二次函数有最小值,则m_;6抛物线向左平移5各单位,再向下平移2个单位,所得抛物线的解析式为_;7某商场销售一批名牌衬衫,平均每天可售出20件,每件可 盈利40元为了扩大销售量,增加盈利,采取了降价措施,经调查发现如果每件计划降价1元,那么商场平均每天可多售出2件若商场平均
5、每天要赢利1200元,则每件衬衫应降价_;8某学生在体育测试时推铅球,千秋所经过的路线是二次函数图像的一部分,如果这名学生出手处为A(0,2),铅球路线最高处为B(6,5),则该学生将铅球推出的距离是_;9二次函数的图像与x轴交点横坐标为2,b,图像与y轴交点到圆点距离为3,则该二次函数的解析式为_;10如图,直线与双曲线在第一象限内的交点R,与x轴、y轴的交点分别为P、Q过R作RMx轴,M为垂足,若OPQ与PRM的面积相等,则k的值等于 三、 解答题:(13题,每题7分,计21分;46题每题8分,计24分;本题共45分)1已知二次函数的图像经过A(0,1),B(2,1)两点(1)求b和c的值
6、;(2)试判断点P(1,2)是否在此函数图像上2已知一次函数的图象与反比例函数的图象交于点P(4,n)(1)求n的值(2)求一次函数的解析式3看图,解答下列问题(1)求经过A、B、C三点的抛物线解析式;(2)通过配方,求该抛物线的顶点坐标和对称轴; (3)用平滑曲线连结各点,画出该函数图象4已知函数y=x2+bx-1的图象经过点(3,2)(1) 求这个函数的解析式;(2)画出它的图象,并指出图象的顶点坐标;(3)当x0时,求使y2的x的取值范围5某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)506070758085
7、每天售出件数30024018015012090假设当天定的售价是不变的,且每天销售情况均服从这种规律(1)观察这些统计数据,找出每天售出件数与每件售价(元)之间的函数关系,并写出该函数关系式(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)6如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状(1) (2)(1)一身高0.7
8、米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;(2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行求这时木板到地面的距离(供选用数据:1.8,1.9,2.1)7已知抛物线yx2mxm2 ()若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB,试求m 的值;()设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且 MNC的面积等于27,试求m的值参考答案:一、 选择题: 1A 2D 3D 4B 5D 6A 7D 8A 9A 10C 11D 12C 13C 14A 1
9、5C二、填空题:1, 2 y= 3 1 42或1 5 6 710元或20元 86 9 或 10 三、解答题:12解:(1)由题意得:, (2)由点P(4,2)在上, 一次函数的解析式为3解:(1)由图可知A(1,1),B(0,2),C(1,1)设所求抛物线的解析式为yax2bxc依题意,得解得 y2x2x2(2)y2x2x22(x)2顶点坐标为(,),对称轴为x(3)图象略,画出正确图象4解:(1)函数y=x2+bx-1的图象经过点(3,2)9+3b-1=2,解得b=-2 函数解析式为y=x2-2x-1 (2)y=x2-2x-1=(x-1)2-2 ,图象略, 图象的顶点坐标为(1,-2) (3
10、)当x=3 时,y=2, 根据图象知,当x3时,y2当x0时,使y2的x的取值范围是x3 5解:(1)由统计数据知,该函数关系为一次函数关系,每天售出件数与每件售价之间的函数关系为: (2)当时, , 解得:;设门市部每天纯利润为 当时,当时, 当时, 时,随的增大而减少时, 时,纯利润最大为5296元6(1)(2)解:(1)如图,建立直角坐标系, 设二次函数解析式为yax2c D(0.4,0.7),B(0.8,2.2), 绳子最低点到地面的距离为0.2米(2)分别作EGAB于G,FHAB于H,AG(ABEF)(1.60.4)0.6在RtAGE中,AE2,EG1.92.21.90.3(米)木板
11、到地面的距离约为0.3米7解: (I)设点(x1,0),B(x2,0) , 则x1 ,x2是方程 x2mxm20的两根x1 x2 m ,x1x2 =m2 0 即m2; 又ABx1 x2,m24m3=0 解得:m=1或m=3(舍去) ,m的值为1 (II)设M(a,b),则N(a,b) M、N是抛物线上的两点,MNCxyO得:2a22m40 a2m2 当m2时,才存在满足条件中的两点M、N 这时M、N到y轴的距离均为, 又点C坐标为(0,2m),而SM N C = 27 ,2(2m)=27 解得m=7 。中考试题分类汇编-函数综合题1. 如图,已知点A(tan,0),B(tan,0)在x轴正半轴
12、上,点A在点B的左边,、 是以线段AB为 斜边、顶点C在x轴上方的RtABC的两个锐角(1)若二次函数yx2kx(22kk2)的图象经过A、B两点,求它的解析式;(2)点C在(1)中求出的二次函数的图象上吗请说明理由解:(1),是RtABC的两个锐角,tantan1tan0,tan0 由题知tan,tan是方程x2kx(22kk2)0的两个根,tanxtan(22kk2)k22k2,k22k21解得,k3或k1 而tantank0,k0k3应舍去,k1故所求二次函数的解析式为yx2x1 (2)不在 过C作CDAB于D令y0,得x2x10,解得x1,x22A(,0),B(2,0),AB tan,
13、tan2设CDm则有CDADtanADAD2CD又CDBDtan2BD,BDCD2mmmADC(,) 当x时,y点C不在(1)中求出的二次函数的图象上AMyxNQO2已知抛物线经过点(1)求抛物线的解析式(2)设抛物线顶点为,与轴交点为求的值(3)设抛物线与轴的另一个交点为,求四边形的面积解:(1)解方程组得, (2)顶点 (3)在中,令得,令得或, 四边形(面积单位)3如图9,抛物线y=ax2+8ax+12a与轴交于A、B两点(点A在点B的左侧),抛物线上另有一点在第一象限,满足 ACB为直角,且恰使OCAOBC.(1) 求线段OC的长.(2) 求该抛物线的函数关系式(3) 在轴上是否存在点
14、P,使BCP为等腰三角形若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.解:(1);(2);(3)4个点:4已知函数y=和y=kx+l(kO) (1)若这两个函数的图象都经过点(1,a),求a和k的值; (2)当k取何值时,这两个函数的图象总有公共点?解;(1) 两函数的图象都经过点(1,a), (2)将y代人y=kx+l,消去y得kx2+x一2=0 kO,要使得两函数的图象总有公共点,只要0即可 18k, 1+8k0,解得k一 k一且k05已知如图,矩形OABC的长OA=,宽OC=1,将AOC沿AC翻折得APC。(1)填空:PCB=_度,P点坐标为( , );(2)若P,A两点在
15、抛物线y= x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)在(2)中的抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP的面积最大若存在,求出这个最大值及此时M点的坐标;若不存在,请说明理由.(1)30,(,);(2)点P(,),A(,0)在抛物线上,故 - +b +c=,-3+b +c=0, b=,c=1. 抛物线的解析式为y=-x2+x+1,C点坐标为(0,1). -02+0+1=1, 点C在此抛物上.6.如图,二资助函数的图象经过点M(1,2)、N(1,6).(1)求二次函数的关系式.(2)把RtABC放在坐标系内,其中CAB = 90,点A、B的坐标分
16、别为(1,0)、(4,0),BC = 5。将ABC沿x轴向右平移,当点C落在抛物线上时,求ABC平移的距离.解:(1)M(1,2),N(1,6)在二次函数y = x2+bx+c的图象上, 解得二次函数的关系式为y = x24x+1. (2)RtABC中,AB = 3,BC = 5,AC = 4, 解得 A(1,0),点C落在抛物线上时,ABC向右平移个单位.7.如图,在平面直角坐标系中,两个函数的图象交于点A。动点P从点O开始沿OA方向以每秒1个单位的速度运动,作PQx轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与OAB重叠部分的面积为S.(1)求点A的坐标.(2)试求出点P在线
17、段OA上运动时,S与运动时间t(秒)的关系式.(3)在(2)的条件下,S是否有最大值若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.(4)若点P经过点A后继续按原方向、原速度运动,当正方形PQMN与OAB重叠部分面积最大时,运动时间t满足的条件是_.解:(1)由 可得 A(4,4)。 (2)点P在y = x上,OP = t,则点P坐标为点Q的纵坐标为,并且点Q在上。,即点Q坐标为。 当时,。当,当点P到达A点时,当时, 。(3)有最大值,最大值应在中,当时,S的最大值为12. (4).8已知一次函数y=+m(Om1)的图象为直线,直线绕原点O旋转180后得直线,ABC三个顶
18、点的坐标分别为A(-,-1)、B(,-1)、C(O,2) (1)直线AC的解析式为_,直线的解析式为_ (可以含m); (2)如图,、分别与ABC的两边交于E、F、G、H,当m在其范围内变化时,判断四边形EFGH中有哪些量不随m的变化而变化?并简要说明理由; (3)将(2)中四边形EFGH的面积记为S,试求m与S的关系式,并求S的变化范围; (4)若m=1,当ABC分别沿直线y=x与y=x平移时,判断ABC介于直线,之间部分的面积是否改变?若不变请指出来若改变请写出面积变化的范围(不必说明理由)解: (1)y= +2 y=-m (2)不变的量有: 四边形四个内角度数不变, 理由略; 梯形EFG
19、H中位线长度不变(或EF+GH不变),理由略 (3)S= 0m1 0s (4)沿y=平移时,面积不变;沿y=x平移时,面积改变,设其面积为,则09 如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A0)与y轴交于点C,C点关于抛物线对称轴的对称点为C点.(1)求C点、C点的坐标(可用含m的代数式表示)Oyx(2)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C、P、Q为顶点的四边形是平行四边形,求Q点和P点的坐标(可用含m的代数式表示)(3)在(2)的条件下,求出平行四边形的周长.12抛物线y=3(x-1)+1的顶点坐标是( A )A(1,1) B(-1,1)
20、 C(-1,-1) D(1,-1)13如图,OAB是边长为的等边三角形,其中O是坐标原点,顶点B在轴正方向上,将OAB 折叠,使点A落在边OB上,记为A,折痕为EF.(1)当AE/轴时,求点A和E的坐标;(2)当AE/轴,且抛物线经过点A和E时,求抛物线与轴的交点的坐标;(3)当点A在OB上运动,但不与点O、B重合时,能否使AEF成为直角三角形若能,请求出此时点A的坐标;若不能,请你说明理由.解:(1)由已知可得A,OE=60o , A,E=AE由AE/轴,得OA,E是直角三角形,设A,的坐标为(0,b)AE=A,E=,OE=2b所以b=1,A,、E的坐标分别是(0,1)与(,1) (2)因为
21、A,、E在抛物线上,所以所以,函数关系式为由得与x轴的两个交点坐标分别是(,0)与(,0) (3)不可能使AEF成为直角三角形.FA,E=FAE=60o,若AEF成为直角三角形,只能是A,EF=90o或A,FE=90o若A,EF=90o,利用对称性,则AEF=90o, A,、E、A三点共线,O与A重合,与已知矛盾;同理若A,FE=90o也不可能所以不能使AEF成为直角三角形. 14.已知抛物线y=x24x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线.求平移后的抛物线解析式;若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围;若将已知的抛物线解析式改为y=ax2
22、+bx+c(a0,b0),并将此抛物线沿x轴方向向左平移 -个单位长度,试探索问题(1)解:配方,得, 向左平移4个单位,得 平移后得抛物线的解析式为 (2)由(1)知,两抛物线的顶点坐标为(2,3),(2,3) 解,得 两抛物线的交点为(0,1) 由图象知,若直线ym与两条抛物线有且只有四个交点时,m3且m1 (3)由配方得, 向左平移个单位长度得到抛物线的解析式为两抛物线的顶点坐标分别为, 解得,两抛物线的交点为(0,c) 由图象知满足(2)中条件的m的取值范围是:m且mc 15.直线分别与轴、轴交于B、A两点求B、A两点的坐标;把AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为
23、一边作等边BCD求D点的坐标 解:如图(1)令x=0,由 得 y=1令y=0,由 得 B点的坐标为(,0),A点的坐标为(0,1) (2)由(1)知OB=,OA=1tanOBA= OBA=30ABC和ABO关于AB成轴对称BC=BO=,CBA=OBA=30 CBO=60 过点C作CMx轴于M,则在RtBCM中CM=BCsinCBO=sin60=BM=BCcosCBO=cos60=OM=OBBM=C点坐标为(,) 连结OCOB=CB,CBO=60BOC为等边三角形 过点C作CEx轴,并截取CE=BC则BCE=60连结BE则BCE为等边三角形作EFx轴于F,则EF= CM=,BF=BM=OF=OB
24、+BF=+=点E坐标为(,) D点的坐标为(0,0)或(,)16已知抛物线y=ax2+bx+c经过A,B,C三点,当x0时,其图象如图所示(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c当x0(第25题)解:(1)由图象,可知A(0,2),B(4,0),C(5,-3),得方程组 解得抛物线的解析式为顶点坐标为(2)所画图如图(3)由图象可知,当-1x0(第28题)17如图,在平面直角坐标系中,O为坐标原点,B(5,0),M为等腰梯形OBCD底边OB上一点,OD=BC=2,DMC=DOB=60(1)求直线CB的解析式:(2)求点M的坐标;(3)DMC绕点M顺时针
25、旋转(3060)后,得到D1MC1(点D1,C1依次与点D,C对应),射线MD1交直线DC于点E,射线MC1交直线CB于点F,设DE=m,BF=n求m与n的函数关系式解:(1)过点C作CAOB,垂足为A在RtABC中,CAB=90,CBO=60,0D=BC=2,CA=BCsinCBO=, BA=BCcosCBO=1(第(1)小题)点C的坐标为(4,)设直线CB的解析式为y=kx+b,由B(5,0),C(4,),得 解得直线CB的解析式为y=-x+5(2)CBM+2+3=180,DMC+1+2=180,CBM=DMC=DOB=602+3=1+2,1=3(第(2)小题)ODMBMCODBC=BMO
26、MB点为(5,0),OB=5设OM=x,则BM=5-xOD=BC=2,22=x(5-x)(第(3)小题图)解得x1=1,x2=4M点坐标为(1,0)或(4,0)(3)(I)当M点坐标为(1,0)时,如图,OM=1,BM=4DCOB,MDE=DMO又DMO=MCB,MDE=MCBDME=CMF=a,DMECMF.(第(3)小题图)CF=2DECF=2+n,DE=m,2+n=2m,即m=1+(0n4)()当M点坐标为(4,0)时,如图OM=4,BM=1.同理可得DMECMF,DE=2CF.CF=2-n,DE=m,m=2(2-n),即m=4-2n(n1)18如图,边长为1的等边三角形OAB的顶点O为
27、坐标原点,点B在x轴的正半轴上,点A在第一象限,动点D在线段OA上移动(不与O,A重合),过点D作DEAB,垂足为E,过点D作DFOB,垂足为F。点M,N,P,Q分别是线段BE,ED,DF,FB的中点。连接MN,NP,PQ,QM。记OD的长为t .(1) 当时,分别求出点D和点E的坐标;(2) 当时,求直线DE的函数表达式;(3)如果记四边形MNPQ的面积为S,那么请写出面积S与变量t之间的函数关系式,并写出自变量t的取值范围,是否存在s的最大值若存在,求出这个最大值及此时t的值;若不存在,请说明理由。19如图,在中,点,在直线上运动,设,(1)如果,试确定与之间的函数关系式;(第22题图)(
28、2)如果的度数为,的度数为,当满足怎样的关系式时,(1)中与之间的函数关系式还成立,试说明理由解:(1)在中, 又, 又, 即,所以 (2)当满足关系式时,函数关系式仍然成立 此时, 又, 又仍然成立 从而(1)中函数关系式成立 BAMPCO(第23题图)20如图,平面直角坐标系中,四边形为矩形,点的坐标分别为,动点分别从同时出发,以每秒1个单位的速度运动其中,点沿向终点运动,点沿向终点运动,过点作,交于,连结,已知动点运动了秒(1)点的坐标为(,)(用含的代数式表示);(2)试求面积的表达式,并求出面积的最大值及相应的值;(3)当为何值时,是一个等腰三角形简要说明理由解:(1)由题意可知,点
29、坐标为 (2)设的面积为,在中,边上的高为,其中 的最大值为,此时 (3)延长交于,则有BAMPCO(第23题图)若, 若,则, 若,则,在中, 综上所述,或,或21. (2006北京市海淀区)已知抛物线的部分图象如图1所示。图1 图2(1)求c的取值范围;(2)若抛物线经过点(0,-1),试确定抛物线的解析式;(3)若反比例函数的图象经过(2)中抛物线上点(1,a),试在图2所示直角坐标系中,画出该反比例函数及(2)中抛物线的图象,并利用图象比较与的大小.22. 解:(1)根据图象可知 且抛物线与x轴有两个交点所以一元二次方程有两个不等的实数根。所以,且所以 (2)因为抛物线经过点(0,-1
30、)把代入得故所求抛物线的解析式为 (3)因为反比例函数的图象经过抛物线上的点(1,a)把代入,得把代入,得所以 画出的图象如图所示.观察图象,除交点(1,-2)外,还有两个交点大致为和把和分别代入和可知,和是的两个交点 根据图象可知:当或或时, 当时, 当时,22已知抛物线yax2bxc经过点(1,2).(1)若a1,抛物线顶点为A,它与x轴交于两点B、C,且ABC为等边三角形,求b的值.(2)若abc4,且abc,求|a|b|c|的最小值.解:由题意,abc2,a1,bc1 抛物线顶点为A(,c)设B(x1,0),C(x2,0),x1x2b,x1x2c,b24c0|BC| x1x2|ABC为
31、等边三角形, c 即b24c2,b24c0,2c1b,b24b160,b22所求b值为22 abc,若a0,则b0,c0,abc0,与abc2矛盾.a0 bc2a,bcb、c是一元二次方程x2(2a)x0的两实根(2a)240, a34a24a160, 即(a24)(a4)0,故a4. abc0,a、b、c为全大于或一正二负若a、b、c均大于,a4,与abc2矛盾; 若a、b、c为一正二负,则a0,b0,c0,则|a|b|c|abca(2a)2a2, a4,故2a26 当a4,bc1时,满足题设条件且使不等式等号成立故|a|b|c|的最小值为6 yxO23. 已知抛物线与y轴的交点为C,顶点为
32、M,直线CM的解析式 y=-x+2并且线段CM的长为(1) 求抛物线的解析式。(2) 设抛物线与x轴有两个交点A(X1 ,0)、B(X2 ,0),且点A在B的左侧,求线段AB的长。(3) 若以AB为直径作N,请你判断直线CM与N的位置关系,并说明理由。(1)解法一:由已知,直线CM:y=x2与y轴交于点C(0,2)抛物线 过点C(0,2),所以c=2,抛物线的顶点M在直线CM上,所以 若b0,点C、M重合,不合题意,舍去,所以b2。即M过M点作y轴的垂线,垂足为Q,在所以,解得,。所求抛物线为: 或 以下同下。(1)解法二:由题意得C(0 , 2),设点M的坐标为M(x ,y)点M在直线上,由
33、勾股定理得,=,即解方程组 得 M(-2,4) 或 M (2,0)当M(-2,4)时,设抛物线解析式为,抛物线过(0,2)点, 当M(2,0)时,设抛物线解析式为抛物线过(0,2)点,NMyOA BD(G)CM所求抛物线为: 或 (2)抛物线与x轴有两个交点,不合题意,舍去。抛物线应为: 抛物线与x轴有两个交点且点A在B的左侧,得(3)AB是N的直径,r = , N(2,0),又M(2,4),MN = 4设直线与x轴交于点D,则D(2,0),DN = 4,可得MN = DN,作NGCM于G,在= r 即圆心到直线CM的距离等于N的半径,直线CM与N相切 24 已知:抛物线y=-x2+4x-3与x轴相交于A、B两点(A点在B点的左侧),顶点为P(1)求A、B、P三点坐标; (2) 在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零; (3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由.解:(1)求得A(1,0),B (3,0), P (2,1)