1、高二数学 编号:SX-12-XX1-1-O82.2.1椭圆及其标准方程(1)导学案 编写时间:2012.12.22姓名: 班级: 组别: 组名:【学习目标】1从具体情境中抽象出椭圆的模型;2掌握椭圆的定义;3掌握椭圆的标准方程【重点难点】重点:椭圆的定义的理解难点:椭圆的标准方程的求解【知识链接】(预习教材理P38 P40,文P32 P34找出疑惑之处)复习1:过两点,的直线方程 复习2:方程 表示以 为圆心, 为半径的 【学习过程】取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 如果把细绳的两端拉开一段距离,分别固定在图板的两个点
2、处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数新知: 我们把平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 反思:若将常数记为,为什么?当时,其轨迹为;当时,其轨迹为试试:已知,到,两点的距离之和等于8的点的轨迹是 小结:应用椭圆的定义注意两点:分清动点和定点;看是否满足常数新知:焦点在轴上的椭圆的标准方程其中若焦点在轴上,两个焦点坐标 ,则椭圆的标准方程是 知识点一:椭圆的标准方程的求解例1 写出适
3、合下列条件的椭圆的标准方程:,焦点在轴上;,焦点在轴上;变式:方程表示焦点在轴上的椭圆,则实数的范围 小结:椭圆标准方程中: ; 例2已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程 变式:椭圆过点 ,求它的标准方程小结:由椭圆的定义出发,得椭圆标准方程 练1. 已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长是( )A B6 C D12练2 方程表示焦点在轴上的椭圆,求实数的范围【基础达标】1平面内一动点到两定点、距离之和为常数,则点的轨迹为()A椭圆 B圆C无轨迹 D椭圆或线段或无轨迹2如果方程表示焦点在轴上的椭圆,那么实数的取值范围是( )A BC
4、 D3如果椭圆上一点到焦点的距离等于6,那么点到另一个焦点的距离是( )A4 B14 C12 D84椭圆两焦点间的距离为,且椭圆上某一点到两焦点的距离分别等于和,则椭圆的标准方程是 5如果点在运动过程中,总满足关系式,点的轨迹是,它的方程是【课堂小结】1. 椭圆的定义:2. 椭圆的标准方程:【当堂检测】1. 写出适合下列条件的椭圆的标准方程:焦点在轴上,焦距等于,并且经过点;焦点坐标分别为,;2. 椭圆的焦距为,求的值【课后反思】本节课我最大的收获是 我还存在的疑惑 高二数学 编号:SX-12-XX1-1-O92.2.1椭圆及其标准方程(2)导学案撰稿: 陈建军 审核: 陈刚明 编写时间:20
5、12.12.25姓名: 班级: 组别: 组名:【学习目标】1掌握点的轨迹的求法;2进一步掌握椭圆的定义及标准方程【重点难点】重点:椭圆的定义及标准方程难点:点的轨迹的求法【知识链接】(预习教材理P41 P42,文P34 P36找出疑惑之处)复习1:椭圆上一点到椭圆的左焦点的距离为,则到椭圆右焦点的距离是 复习2:在椭圆的标准方程中,则椭圆的标准方程是 【学习过程】问题:圆的圆心和半径分别是什么?问题:圆上的所有点到 (圆心)的距离都等于 (半径) ;反之,到点的距离等于的所有点都在圆 上知识点一:求点的轨迹及方程例1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹是
6、什么?变式: 若点在的延长线上,且,则点的轨迹又是什么?小结:椭圆与圆的关系:圆上每一点的横(纵)坐标不变,而纵(横)坐标伸长或缩短就可得到椭圆例2设点的坐标分别为,.直线相交于点,且它们的斜率之积是,求点的轨迹方程 变式:点的坐标是,直线相交于点,且直线的斜率与直线的斜率的商是,点的轨迹是什么?练1求到定点与到定直线的距离之比为的动点的轨迹方程练2一动圆与圆外切,同时与圆内切,求动圆圆心的轨迹方程式,并说明它是什么曲线【基础达标】1若关于的方程所表示的曲线是椭圆,则在( )A第一象限 B第二象限 C第三象限 D第四象限2若的个顶点坐标、,的周长为,则顶点C的轨迹方程为( )A B C D3设定点 ,动点满足条件,则点的轨迹是( )A椭圆 B线段 C不存在 D椭圆或线段4与轴相切且和半圆内切的动圆圆心的轨迹方程是 5. 设为定点,|=,动点满足,则动点的轨迹是 【课堂小结】注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式;相关点法:寻求点的坐标与中间的关系,然后消去,得到点的轨迹方程【当堂检测】1已知三角形的一边长为,周长为,求顶点的轨迹方程2点与定点的距离和它到定直线的距离的比是,求点的轨迹方程式,并说明轨迹是什么图形【课后反思】本节课我最大的收获是 我还存在的疑惑