1、高考数学文科知识点总结第 23 页 共 34 页必修1数学知识点第一章:集合与函数概念1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。2、 只要构成两个集合的元素是一样的,就称这两个集合相等。3、 常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描述法.1.1.2、集合间的基本关系1、 一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作.2、 如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB.3、 把不含任何元素的集合叫
2、做空集.记作:.并规定:空集合是任何集合的子集.4、 如果集合A中含有n个元素,则集合A有个子集,个真子集.1.1.3、集合间的基本运算1、 一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:.2、 一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:.3、全集、补集?1.2.1、函数的概念1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系
3、完全一致,则称这两个函数相等.1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.1.3.1、单调性与最大(小)值1、注意函数单调性的证明方法:(1)定义法:设那么上是增函数;上是减函数.步骤:取值作差变形定号判断格式:解:设且,则:= (2)导数法:设函数在某个区间内可导,若,则为增函数;若,则为减函数.1.3.2、奇偶性1、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、 一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.知识链接:函数与导数1、函数在点处的导数的几何意义:函数在
4、点处的导数是曲线在处的切线的斜率,相应的切线方程是.2、几种常见函数的导数; ; ; ; ;3、导数的运算法则(1). (2). (3).4、复合函数求导法则复合函数的导数和函数的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.解题步骤:分层层层求导作积还原.5、函数的极值 (1)极值定义:极值是在附近所有的点,都有,则是函数的极大值; 极值是在附近所有的点,都有,则是函数的极小值.(2)判别方法:图象性质(1)定义域:R(2)值域:(0,+)(3)过定点(0,1),即x=0时,y=1(4)在 R上是增函数(4)在R上是减函数(5);(5);如果在附近的左侧0,右侧0,那么是极大值;如
5、果在附近的左侧0,右侧0,那么是极小值.6、求函数的最值 (1)求在内的极值(极大或者极小值)(2)将的各极值点与比较,其中最大的一个为最大值,最小的一个为极小值。注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。第二章:基本初等函数()2.1.1、指数与指数幂的运算1、 一般地,如果,那么叫做 的次方根。其中.2、 当为奇数时,;当为偶数时,.3、 我们规定: ;4、 运算性质: ;.2.1.2、指数函数及其性质1、记住图象:2、性质:2.2.1、对数与对数运算1、指数与对数互化式:;2、对数恒等式:.3、基本性质:,.4、运算性质:当时:;.5、
6、换底公式:.6、重要公式:7、倒数关系:.2.2.2、对数函数及其性质1、记住图象:2、性质:图象性质(1)定义域:(0,+)(2)值域:R(3)过定点(1,0),即x=1时,y=0(4)在 (0,+)上是增函数(4)在(0,+)上是减函数(5);(5);2.3、幂函数1、几种幂函数的图象:第三章:函数的应用3.1.1、方程的根与函数的零点1、方程有实根 函数的图象与轴有交点 函数有零点.2、 零点存在性定理:如果函数在区间 上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根.3.1.2、用二分法求方程的近似解1、掌握二分法.3.2.1、几类不同增长
7、的函数模型3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点第一章:空间几何体1、空间几何体的结构常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。3、
8、空间几何体的表面积与体积圆柱侧面积;圆锥侧面积:圆台侧面积:体积公式:;球的表面积和体积:.第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。9、线面平行:判定:平
9、面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线线平行,则线面平行)。性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简称线面平行,则线线平行)。10、面面平行:判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面平行,则面面平行)。性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平行,则线线平行)。11、线面垂直:定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称线线垂直,则线面垂直)。性质:
10、垂直于同一个平面的两条直线平行。12、面面垂直:定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,则面面垂直)。性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。(简称面面垂直,则线面垂直)。第三章:直线与方程1、倾斜角与斜率:2、直线方程:点斜式:斜截式:两点式:截距式:一般式:3、对于直线:有:;和相交;和重合;.4、对于直线:有:;和相交;和重合;.5、两点间距离公式:6、点到直线距离公式:7、两平行线间的距离公式:与:平行,则第四章:圆与方程1、圆的方程:标准方程:其中
11、圆心为,半径为.一般方程:.其中圆心为,半径为.2、直线与圆的位置关系直线与圆的位置关系有三种:;. 弦长公式:3、两圆位置关系:外离:;外切:;相交:;内切:;内含:.3、空间中两点间距离公式:必修3数学知识点第一章:算法1、算法三种语言:自然语言、流程图、程序语言;2、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法;3、算法的三种基本结构: 顺序结构、条件结构、循环结构顺序结构示意图:语句n+1语句n(图1)条件结构示意图:IF-THEN-ELSE格式:满足条件?语句1语句2是否(图2)满足条件?语句是否IF-THEN格式:(图3)循环结构示意图:当型(WHILE
12、型)循环结构示意图:满足条件?循环体是否(图4)直到型(UNTIL型)循环结构示意图:满足条件?循环体是否(图5)4、基本算法语句:输入语句的一般格式:INPUT“提示内容”;变量输出语句的一般格式:PRINT“提示内容”;表达式赋值语句的一般格式:变量表达式 (“=”有时也用“”).条件语句的一般格式有两种:IFTHENELSE语句的一般格式为:IF 条件 THEN语句1ELSE语句2END IF(图2)IFTHEN语句的一般格式为:IF 条件 THEN语句END IF(图3)循环语句的一般格式是两种: 当型循环(WHILE)语句的一般格式:WHILE 条件循环体WEND(图4)直到型循环(
13、UNTIL)语句的一般格式:DO循环体LOOP UNTIL 条件(图5)算法案例:辗转相除法结果是以相除余数为0而得到利用辗转相除法求最大公约数的步骤如下:):用较大的数m除以较小的数n得到一个商和一个余数;):若0,则n为m,n的最大公约数;若0,则用除数n除以余数得到一个商和一个余数;):若0,则为m,n的最大公约数;若0,则用除数除以余数得到一个商和一个余数;依次计算直至0,此时所得到的即为所求的最大公约数。更相减损术结果是以减数与差相等而得到利用更相减损术求最大公约数的步骤如下:):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。):以较大的数减去较小的数,
14、接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。进位制十进制数化为k进制数除k取余法k进制数化为十进制数第二章:统计1、抽样方法:简单随机抽样(总体个数较少)系统抽样(总体个数较多)分层抽样(总体中差异明显)注意:在N个个体的总体中抽取出n个个体组成样本,每个个体被抽到的机会(概率)均为。2、总体分布的估计:一表二图:频率分布表数据详实频率分布直方图分布直观频率分布折线图便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。茎叶图:茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。个位数为
15、叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。3、总体特征数的估计:平均数:;取值为的频率分别为,则其平均数为;注意:频率分布表计算平均数要取组中值。方差与标准差:一组样本数据方差:;标准差:注:方差与标准差越小,说明样本数据越稳定。平均数反映数据总体水平;方差与标准差反映数据的稳定水平。线性回归方程变量之间的两类关系:函数关系与相关关系;制作散点图,判断线性相关关系线性回归方程:(最小二乘法)注意:线性回归直线经过定点。第三章:概率1、随机事件及其概率:事件:试验的每一种可能的结果,用大写英文字母表示;必然事件、不可能事件、随机事件的特点;随机事件A的概率:.2、古典概型:基本
16、事件:一次试验中可能出现的每一个基本结果;古典概型的特点:所有的基本事件只有有限个;每个基本事件都是等可能发生。古典概型概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率.3、几何概型:几何概型的特点:所有的基本事件是无限个;每个基本事件都是等可能发生。几何概型概率计算公式:;其中测度根据题目确定,一般为线段、角度、面积、体积等。4、互斥事件:不可能同时发生的两个事件称为互斥事件;如果事件任意两个都是互斥事件,则称事件彼此互斥。如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B发生的概率的和,即:如果事件彼此互斥,则有:对立事件:两个互
17、斥事件中必有一个要发生,则称这两个事件为对立事件。事件的对立事件记作对立事件一定是互斥事件,互斥事件未必是对立事件。必修4数学知识点第一章:三角函数1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合: .1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .3、弧长公式:.4、扇形面积公式:.1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:2、 设点为角终边上任意一点,那么:(设) ,3、 ,在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT5、 特殊角0,30,45,60
18、,90,180,270等的三角函数值.01.2.2、同角三角函数的基本关系式1、 平方关系:.2、 商数关系:.3、 倒数关系:1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)1、 诱导公式一:(其中:)2、 诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: 1.4.1、正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: 1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、能够对照
19、图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T,使得当取定义域内的每一个值时,都有,那么函数就叫做周期函数,非零常数T叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质图象定义域值域-1,1-1,1最值无周期性奇偶性奇偶奇单调性在上单调递增在上单调递减在上单调递增在上单调递减在上单调递增对称性对称轴方程:对称中心对称轴方程:对称中心无对称轴对称中心1.5、函数的图象1、对于函数:有:振幅A,周期,初相,相位,频率.2、能够讲出函数的图象与的图象之间的平移伸缩变换关系. 先平移后伸缩: 平移个单位 (左加右
20、减) 横坐标不变 纵坐标变为原来的A倍 纵坐标不变 横坐标变为原来的倍平移个单位 (上加下减) 先伸缩后平移: 横坐标不变 纵坐标变为原来的A倍 纵坐标不变 横坐标变为原来的倍平移个单位 (左加右减)平移个单位 (上加下减)3、三角函数的周期,对称轴和对称中心函数,xR及函数,xR(A,为常数,且A0)的周期;函数,(A,为常数,且A0)的周期.对于和来说,对称中心与零点相联系,对称轴与最值点联系.求函数图像的对称轴与对称中心,只需令与解出即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式利用图像特征:,.要根据周期来求,要用图像的关键点来求.1.6、三角函数模型的简单应用1、
21、 要求熟悉课本例题.第三章、三角恒等变换3.1.1、两角差的余弦公式记住15的三角函数值:3.1.2、两角和与差的正弦、余弦、正切公式1、2、3、4、5、.6、.3.1.3、二倍角的正弦、余弦、正切公式1、, 变形: .2、.变形如下: 升幂公式:降幂公式:3、.4、3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式 (其中辅助角所在象限由点的象限决定, ).第二章:平面向量2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点
22、、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2、.2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.2、 三角形减法法则和平行四边形减法法则.2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:
23、,它的长度和方向规定如下: ,当时, 的方向与的方向相同;当时, 的方向与的方向相反.2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数,使.2.3.2、平面向量的正交分解及坐标表示1、 .2.3.3、平面向量的坐标运算1、 设,则: ,.2、 设,则: .2.3.4、平面向量共线的坐标表示1、设,则线段AB中点坐标为,ABC的重心坐标为.2.4.1、平面向量数量积的物理背景及其含义1、 .2、 在方向上的投影为:.3、 .4、 .5、 .2.4.2
24、、平面向量数量积的坐标表示、模、夹角1、 设,则:2、 设,则:.3、 两向量的夹角公式 必修5数学知识点第一章:解三角形1、正弦定理:.(其中为外接圆的半径)用途:已知三角形两角和任一边,求其它元素; 已知三角形两边和其中一边的对角,求其它元素。2、余弦定理:用途:已知三角形两边及其夹角,求其它元素;已知三角形三边,求其它元素。做题中两个定理经常结合使用.3、三角形面积公式:4、三角形内角和定理: 在ABC中,有.5、一个常用结论: 在中,若特别注意,在三角函数中,不成立。第二章:数列1、数列中与之间的关系:注意通项能否合并。2、等差数列:定义:如果一个数列从第2项起,每一项与它的前一项的差
25、等于同一个常数,即=d ,(n2,nN),那么这个数列就叫做等差数列。等差中项:若三数成等差数列通项公式: 或 前项和公式:常用性质:若,则;下标为等差数列的项,仍组成等差数列;数列(为常数)仍为等差数列;若、是等差数列,则、 (、是非零常数)、,也成等差数列。单调性:的公差为,则:)为递增数列;)为递减数列;)为常数列;数列为等差数列(p,q是常数)若等差数列的前项和,则、 是等差数列。3、等比数列定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。等比中项:若三数成等比数列(同号)。反之不一定成立。通项公式:前项和公式:常用性质若,则;为等比数列
26、,公比为(下标成等差数列,则对应的项成等比数列)数列(为不等于零的常数)仍是公比为的等比数列;正项等比数列;则是公差为的等差数列;若是等比数列,则 是等比数列,公比依次是单调性:为递增数列;为递减数列;为常数列;为摆动数列;既是等差数列又是等比数列的数列是常数列。若等比数列的前项和,则、 是等比数列.4、非等差、等比数列通项公式的求法类型 观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项。类型 公式法:若已知数列的前项和与的关系,求数列的通项可用公式 构造两式作差求解。用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另
27、一种是“合二为一”,即和合为一个表达,(要先分和两种情况分别进行运算,然后验证能否统一)。类型 累加法:形如型的递推数列(其中是关于的函数)可构造: 将上述个式子两边分别相加,可得:若是关于的一次函数,累加后可转化为等差数列求和; 若是关于的指数函数,累加后可转化为等比数列求和;若是关于的二次函数,累加后可分组求和; 若是关于的分式函数,累加后可裂项求和. 类型 累乘法:形如型的递推数列(其中是关于的函数)可构造: 将上述个式子两边分别相乘,可得:有时若不能直接用,可变形成这种形式,然后用这种方法求解。类型 构造数列法:形如(其中均为常数且)型的递推式: (1)若时,数列为等差数列; (2)若
28、时,数列为等比数列;(3)若且时,数列为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种: 法一:设,展开移项整理得,与题设比较系数(待定系数法)得,即构成以为首项,以为公比的等比数列.再利用等比数列的通项公式求出的通项整理可得法二:由得两式相减并整理得即构成以为首项,以为公比的等比数列.求出的通项再转化为类型(累加法)便可求出形如型的递推式:当为一次函数类型(即等差数列)时:法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得法二:当的公差为时,由递推式得:,两式相减得:,令得:转化为类型求出 ,再用类型(累加法
29、)便可求出当为指数函数类型(即等比数列)时:法一:设,通过待定系数法确定的值,转化成以为首项,以为公比的等比数列,再利用等比数列的通项公式求出的通项整理可得法二:当的公比为时,由递推式得:,两边同时乘以得,由两式相减得,即,在转化为类型便可求出法三:递推公式为(其中p,q均为常数)或(其中p,q, r均为常数)时,要先在原递推公式两边同时除以,得:,引入辅助数列(其中),得:再应用类型的方法解决。当为任意数列时,可用通法: 在两边同时除以可得到,令,则,在转化为类型(累加法),求出之后得.类型 对数变换法:形如型的递推式:在原递推式两边取对数得,令得:,化归为型,求出之后得(注意:底数不一定要
30、取10,可根据题意选择)。类型 倒数变换法:形如(为常数且)的递推式:两边同除于,转化为形式,化归为型求出的表达式,再求;还有形如的递推式,也可采用取倒数方法转化成形式,化归为型求出的表达式,再求.类型 形如型的递推式:用待定系数法,化为特殊数列的形式求解。方法为:设,比较系数得,可解得,于是是公比为的等比数列,这样就化归为型。总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式5、非等差、等比数列前项和公式的求法错位相减法若数列为等差数列,数列为等比数列,则数列的求和就要采用此法.将数列的每一项分别乘以的公比,然后在
31、错位相减,进而可得到数列的前项和.此法是在推导等比数列的前项和公式时所用的方法.裂项相消法一般地,当数列的通项 时,往往可将变成两项的差,采用裂项相消法求和.可用待定系数法进行裂项:设,通分整理后与原式相比较,根据对应项系数相等得,从而可得常见的拆项公式有: 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:找通向项公式由通项公式确定如何分组.倒序相加法如果一个数列,与首末两项等距的两项之和等于首末两项之和,则可用把正着写与倒着写的两个和式相加,就得到了一个常数列的和,这种求和方法称为倒序相加
32、法。特征:记住常见数列的前项和:第三章:不等式3.1、不等关系与不等式1、不等式的基本性质(对称性)(传递性)(可加性)(同向可加性)(异向可减性)(可积性)(同向正数可乘性)(异向正数可除性)(平方法则)(开方法则)(倒数法则)2、几个重要不等式,(当且仅当时取号). 变形公式:(基本不等式) ,(当且仅当时取到等号).变形公式: 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.(三个正数的算术几何平均不等式)(当且仅当时取到等号).(当且仅当时取到等号).(当且仅当时取到等号).(当仅当a=b时取等号)(当仅当a=b时取等号)其中规律:小于1同加则
33、变大,大于1同加则变小.绝对值三角不等式3、几个著名不等式平均不等式:,(当且仅当时取号).(即调和平均几何平均算术平均平方平均). 变形公式: 幂平均不等式:二维形式的三角不等式:二维形式的柯西不等式: 当且仅当时,等号成立.三维形式的柯西不等式:一般形式的柯西不等式:向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使时,等号成立.排序不等式(排序原理):设为两组实数.是的任一排列,则(反序和乱序和顺序和)当且仅当或时,反序和等于顺序和.琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任意两点有则称f(x)为凸(或凹)函数.4、不等式证明的几种常用
34、方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:舍去或加上一些项,如将分子或分母放大(缩小),如 等.5、一元二次不等式的解法求一元二次不等式解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项
35、通分标准化,则 (时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:当时,当时, 规律:根据指数函数的性质转化.10、对数不等式的解法当时, 当时, 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:定义法:平方法:同解变形法,其同解定理有:规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数
36、进行分类讨论,分类讨论的标准有:讨论与0的大小;讨论与0的大小;讨论两根的大小.14、恒成立问题不等式的解集是全体实数(或恒成立)的条件是:当时 当时不等式的解集是全体实数(或恒成立)的条件是:当时当时恒成立恒成立恒成立恒成立15、线性规划问题二元一次不等式所表示的平面区域的判断: 法一:取点定域法:由于直线的同一侧的所有点的坐标代入后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点(如原点),由的正负即可判断出或表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,或表示直线上方的区域;若异号,
37、则表示直线上方的区域.即:同号上方,异号下方.二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.利用线性规划求目标函数为常数)的最值: 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值法二:画移定求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,将最优解代入目标函数即可求出最大值或最小值
38、 .第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.若则使目标函数所表示直线的纵截距最大的角点处,取得最大值,使直线的纵截距最小的角点处,取得最小值;若则使目标函数所表示直线的纵截距最大的角点处,取得最小值,使直线的纵截距最小的角点处,取得最大值.常见的目标函数的类型:“截距”型:“斜率”型:或“距离”型:或或在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.选修数学知识点专题一:常用逻辑用语1、命题:可以判断真假的语句叫命题;逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词;简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结
39、词构成的命题.常用小写的拉丁字母,表示命题.2、四种命题及其相互关系四种命题的真假性之间的关系:、两个命题互为逆否命题,它们有相同的真假性;、两个命题为互逆命题或互否命题,它们的真假性没有关系3、充分条件、必要条件与充要条件、一般地,如果已知,那么就说:是的充分条件,是的必要条件;若,则是的充分必要条件,简称充要条件、充分条件,必要条件与充要条件主要用来区分命题的条件与结论之间的关系:、从逻辑推理关系上看:若,则是充分条件,是的必要条件;若,但 ,则是充分而不必要条件;若 ,但,则是必要而不充分条件;若且,则是的充要条件;若 且 ,则是的既不充分也不必要条件.、从集合与集合之间的关系上看:已知
40、满足条件,满足条件:若,则是充分条件;若,则是必要条件;若A B,则是充分而不必要条件;若B A,则是必要而不充分条件;若,则是的充要条件;若且,则是的既不充分也不必要条件.4、复合命题复合命题有三种形式:或();且();非().复合命题的真假判断“或”形式复合命题的真假判断方法:一真必真;“且”形式复合命题的真假判断方法:一假必假;“非”形式复合命题的真假判断方法:真假相对.5、全称量词与存在量词全称量词与全称命题 短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.含有全称量词的命题,叫做全称命题.存在量词与特称命题短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.含有存在量词的命题,叫做特称命题.全称命题与特称命题的符号表示及否定全称命题:,它的否定:全称命题的否定是特称命题特称命题:,它的否定:特称命题的否定是全称命题.