1、整 式 的 乘 除知识点归纳:回顾:代数式1、 单项式的概念由数与字母的乘积构成的代数式叫做单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。次数如何判断?如:的 系数为,次数为4,单独的一个非零数的次数是0。单独的数字或字母也称单项式2、 多项式的概念几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。次数如何判断?二次项、一次项判断根据?如:,项有、1,二次项为、,一次项为,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。代数式分类总结注意:凡分母含有字母代数式
2、都不是整式。也不是单项式和多项式。4、多项式按字母的升(降)幂排列:如:按的升幂排列:按的降幂排列:5、同底数幂的乘法法则什么是同底数幂?同底数幂中的底数可以是具体的数字,也可以是单项式或多项式,但和不是同底数幂。(都是正整数)解释结论:同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:1填空:(1)叫做的m次幂,其中a叫幂的_,m叫幂的_;(2)写出一个以幂的形式表示的数,使它的底数为c,指数为3,这个数为_;(3)表示_,表示_;(4)根据乘方的意义,_,_,因此2计算:(1) (2)(3) (4)(5) (6)(7) (8)3计算:(1) (2)(3) (4)(5) (
3、6)(7) (8)(9) (10)(11) (12)4下面的计算对不对?如果不对,应怎样改正?(1); (2);(3); (4);(5); (6);(7); (8);(9)5选择题:(1)可以写成()A B C D(2)下列式子正确的是()A B C D(3)下列计算正确的是()A B C D6、幂的乘方法则(都是正整数)解释结论:幂的乘方,底数不变,指数相乘。如:幂的乘方法则可以逆用:即如: 已知:,求的值;7、积的乘方法则 (是正整数)解释结论:积的乘方,等于各因数乘方的积。如:(=8、同底数幂的除法法则(都是正整数,且解释结论:同底数幂相除,底数不变,指数相减。如:1. =_, =_.2
4、. =_,.3.4. =_.5. =_.6. =_,=_.7.若,则=_,=_.8.若,则n=_.(二)、选择题9.若a为有理数,则的值为( ) A.有理数 B.正数 C.零或负数 D.正数或零10.若,则a与b的关系是( ) A.异号 B.同号 C.都不为零 D.关系不确定11.计算的结果是( ) A.- B. C.- D.12.= ( ) A. B. C. D.13.下列命题中,正确的有( ),m为正奇数时,一定有等式成立,等式,无论m为何值时都不成立 三个等式:都不成立( ) A.1个 B.2个 C.3个 D.4个14.已知x=1,y= ,则的值等于( ) A.- 或- B. 或 C.
5、D.-15. 已知,则a、b、c的大小关系是( ) A.bca B.abc C.cab D.abc16.计算等于( ) A.- B. C.1 D.-1(三)、解答题17.计算 (1); (2); (3) (m为正整数).18.已知,求(1)的值;(2)的值19.比较与的大小20.已知,求的值21.若a=-3,b=25,则的末位数是多少?9、零指数和负指数任何不等于零的数的零次方等于1。(是正整数)一个不等于零的数的次方等于这个数的次方的倒数。如:10、科学记数法如:0.00000721=7.21(第一个不为零的数前面有几个零就是负几次方)11、单项式的乘法法则单项式与单项式相乘,把他们的系数,
6、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:积的系数等于各因式系数的积,先确定符号,再计算绝对值。相同字母相乘,运用同底数幂的乘法法则。一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘法法则对于三个以上的单项式相乘同样适用。单项式乘以单项式,结果仍是一个单项式。如:12、单项式乘以多项式单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即(都是单项式)注意:积是一个多项式,其项数与多项式的项数相同。运算时要注意积的符号,多项式的每一项都包括它前面的符号。在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。如:13
7、、多项式与多项式相乘的法则多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:14、平方差公式注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如:(a+b1)(ab+1)= 。计算(2x+y-z+5)(2x-y+z+5) 15、完全平方公式公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。注意: 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。如:、试说明不论x,y取何值,代数式的
8、值总是正数。、已知 求与的值.16、三项式的完全平方公式17、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式如:18、多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:方法总结:乘法与除法互为逆运算。 被除式=除式商式+余式例如:已知一个多项式除以多项式所得的商式是,余式是,求这个多项式。单项式与多项式的乘法复习题1、 若的展开式中项的系数为-2,则
9、的值为 。2、 若化简后的结果中不含有的一次项,则的值为 。3、 若、分别是关于的7次多项式与5次多项式,则( )。 A. 一定是12次多项式 B. 一定是35次多项式 C.一定是不高于11次的多项式 D.无法确定4、 多项式能被整除,那么的值为 。5、 若等式成立,则的值为 。6、 已知,求的值。7、 已知,求的值。8、已知,求的值。9、已知,求代数式的值。10、若的乘积中不含和项,求和的值答:当地球运行到月球和太阳的中间,如果地球挡住了太阳射向月球的光,便发生月食。3、除了我们日常生活产生的家庭垃圾外,工厂、学校、医院、建筑工地等每天也在产生大量的垃圾。怎样熟练运用公式:(一)、明确公式的
10、结构特征这是正确运用公式的前提,1如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方明确了公式的结构特征就能在各种情况下正确运用公式22、光的传播速度是每秒钟30万千米,光年就是光在一年中所走过的距离,它是用来计量恒星间距离的单位。(二)、理解字母的广泛含义一、填空:乘法公式中的字母a、b可以是具体的数,也可以是单项式或多项式理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式如计算(x+2y3z)2,若视x+2y为公式中的a,3z为b,则就可用(ab)2=a22ab+b2来解了
11、。7、食盐、白糖、碱面、味精的颗粒都是有规则几何外形的固体,人们把这样的固体物质叫做晶体。自然界中的大部分固体物质都是晶体或由晶体组成。(三)、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点5、在咀嚼米饭过程中,米饭出现了甜味,说明了什么?常见的几种变化是:2、如果我们想要设计一个合理、清洁的垃圾填埋场,我们首先应考虑要解决的问题有哪些呢?1、位置变化 如(3x+5y)(5y3x)交换3x和5y的位置后即可用平方差公式计算了答:月相从新月开始,然后是峨眉月、上弦月、满月、下弦月、峨眉月。2、符号变化 如(2m7n)
12、(2m7n)变为(2m+7n)(2m7n)后就可用平方差公式求解了(思考:不变或不这样变,可以吗?)第一单元 微小世界3、数字变化 如98102,992,912等分别变为(1002)(100+2),(1001)2,(90+1)2后就能够用乘法公式加以解答了4、系数变化 如(4m+)(2m)变为2(2m+)(2m)后即可用平方差公式进行计算了5、项数变化 如(x+3y+2z)(x3y+6z)变为(x+3y+4z2z)(x3y+4z+2z)后再适当分组就可以用乘法公式来解了(四)、注意公式的灵活运用答:燃烧的蜡烛变得越来越短,发光发热并伴有气体生成。有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便如计算(a2+1)2(a21)2,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便即原式=(a2+1)(a21)2=(a41)2=a82a4+1对数学公式只会顺向(从左到右)运用是远远不够的,还要注意逆向(从右到左)运用如计算(1)(1)(1)(1)(1),若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题