制粒机环摸及调质课件.ppt

上传人(卖家):ziliao2023 文档编号:5688329 上传时间:2023-05-03 格式:PPT 页数:54 大小:255.51KB
下载 相关 举报
制粒机环摸及调质课件.ppt_第1页
第1页 / 共54页
制粒机环摸及调质课件.ppt_第2页
第2页 / 共54页
制粒机环摸及调质课件.ppt_第3页
第3页 / 共54页
制粒机环摸及调质课件.ppt_第4页
第4页 / 共54页
制粒机环摸及调质课件.ppt_第5页
第5页 / 共54页
点击查看更多>>
资源描述

1、制粒机环摸及调质 环模是颗粒机的关键零件,是颗粒机的最主要易损件,根据统计,环模损耗费占整个生产车间维修费的25%以上,同时对挤压出来的颗粒饲料质量有着直接的影响。因此,了解环模的特性并对环模进行正确的选用、合理的使用以及有效的保养,对于饲料生产者来说是至关重要的。下面对环模的特性及其选用、使用和保养作些浅析,以供大家参考。环模孔结构、压缩比和粗糙度 常见的环模孔主要有直形孔、阶梯形孔、外锥形孔和内锥形孔等。阶梯形孔又分为释放式阶梯孔(俗称减压孔或释放孔)和压缩式阶梯孔,如图1所示,不同的模孔形式适合不同种类的饲料原料或不同的饲料配方。环模压缩比是指环模孔的有效长度和环模孔的最小直径的比值,它

2、是反映颗粒饲料挤压强度的一个指标。压缩比越大,挤出的颗粒饲料越结实。对于直形孔的环模压缩比来说,环模孔的有效长度即为环模的总厚度,最小直径即为模孔本身的直径;对于释放式阶梯孔和外锥形孔来说,模孔的有效长度即为环模的总厚度减去释放孔的长度或外锥孔的长度,小直径段的孔径即为计算压缩比的孔径;对于压缩式阶梯孔和内锥形孔来说,这种情况比较特殊,一般把整个环模厚度作为模孔的有效长度,最小直径取小直径段的孔径,当然,这样计算出的环模压缩比的含义和前两种情况是有区别的。粗糙度也是衡量环模质量的重要指标。在同样的压缩比下,粗糙度值越大,饲料挤出阻力越大,出料越困难,过大的粗糙度也影响颗粒表面的质量。合适的粗糙

3、度值为应在0.81.6之间。环模工作面积、孔的排列和开孔率 环模工作面积指环模的内径周长和有效宽度的乘积,有效宽度指环模两越程槽之间的距离。在同样的工作面积下,环模内径和有效宽度成反比。环模钻孔时的排列方式一般沿周向排列,并在宽度方向上排与排之间的小孔相互交错,使整个钻出的小孔呈近似等边三角形排列。如果设小孔的直径为d,小孔与小孔之间的壁厚为a,环模开孔率为,则根据等边三角形原理,不难算出:0.9d2/(d+a)2 例如,小孔直径为4.5mm的环模,如果取小孔之间的壁厚为2.6mm,则可以算出环模开孔率为36%。从上面的公式可以看出,在模孔直径一定的情况下,要提高环模的开孔率,必须减小模孔之间

4、的壁厚,但最小壁厚必须满足环模强度的需要。一般的规律是,模孔直径越大,环模开孔率越高。环模线速度 环模线速度指环模内圆切线速度,它的高低影响到挤压区内的料层厚度及物料通过模孔的时间,进而影响制粒机产量和颗粒质量。线速度过高时,有可能使挤压区内的物料形成断层,制粒不连续,制出的颗粒松软,粉料多,而且对于水分含量较高的物料还易打滑,甚至根本不能制粒;较低的环模线速度虽然制出的颗粒质量好,但对产量影响较大。常用的环模线速度一般在69m/s之间。环模安装方式 环模安装方式主要有直面式安装、锥面式安装和抱箍式安装。直面式安装简单,环模不易倾斜,但环模固定螺栓容易剪断,不适用于大型号的制粒机。锥面式安装环

5、模定心性能好,传递扭矩大,环模固定螺栓不易剪断,但需要装配者细心和掌握一定的技巧,不然环模易装斜。抱箍式安装比较适用于小型号的制粒机,安装方便,需时短,缺点是环模本身不对称,不能掉面使用。环模的选用 通过环模的特性可以看出,选用一个环模需要考虑的因素是很多的。但在实际工作中,通常一些因素是早已设计好了的,如环模的安装方式、环模线速度和环模工作面积等,这在购买颗粒机时就已经决定了,一般不会改变。另外一些因素可通过选择专业的环模制造厂家来保证,如环模的材料、热处理强度及耐磨性、模孔的开孔率和粗糙度等,这些因素专业的环模制造厂家通常都能达到最佳的性能要求,使用者只要做到不贪图便宜选购没有技术和设备保

6、障的厂家生产的环模就可以了。例如模孔的加工和热处理质量要靠专门的枪钻和真空热处理设备才能保证,普通的钻床和热处理方法很难加工出高质量的环模。目前在饲料厂普遍面临的是如何根据自己生产的饲料品种及配方来选用合适的模孔形式及环模压缩比。一般来说,直形孔和释放式阶梯形孔适于加工配合饲料;外锥形孔适合加工脱脂糠等高纤维的饲料;内锥形孔和压缩式阶梯孔宜加工草粉料类比重轻的饲料。对于上面提到的释放式阶梯孔的设计原因,是由于某些品种的饲料,尤其是小直径的饲料,在保证合理压缩比的条件下,环模的壁厚达不到最低要求,以致环模强度不够,在生产中常会出现环模爆裂现象,而不得已采取的加厚措施,方法是在保证模孔有效长度的前

7、提下,增加环模的厚度并同时增加减压孔(释放孔)。对于环模压缩比的选用,由于各家配方不一样,采用的原料各异,同时制粒工艺也不同,具体合适的压缩比还要靠各个饲料生产厂家在生产中摸索得到,这里只能根据以往的经验给出一个大致的范围。一般来说,畜禽类饲料宜选用913之间的压缩比;鱼类饲料宜选用1316之间的压缩比;虾类饲料宜选用2025之间的压缩比;热敏感类饲料宜选用79之间的压缩比;牧草和秸秆类饲料宜选用69之间的压缩比。另外,饲料生产者也可根据自己的质量要求稍稍提高或降低实际的压缩比,比如选用稍低的压缩比对于增加产量、降低能耗、减轻环模的磨损有利,但同时也降低了饲料品质,如颗粒不够结实,粉化率高等;

8、反之,则对颗粒品质有利,如颗粒外观光滑,密度增加,粉化率小等,但会增加生产成本。环模的使用 正确地调整环模和压辊之间的工作间隙是环模使用的关键。一般来说,环模与压辊之间的间隙在0.10.3mm之间为宜。通常情况下,新压辊和新环模相配宜采用稍大的间隙,旧压辊和旧环模相配宜采用较小的间隙,大孔径的环模宜选用稍大的间隙,小孔径的环模宜选用稍小的间隙,容易制粒的物料宜取大间隙,难以制粒的物料宜取小间隙。对于操作者来说,要有实际的操作经验,对环模间隙能够熟练地进行选择和调整。在环模使用过程中还要注意以下几点:新购环模一般在开机前需要用油料进行“洗模”,以去除模孔中的毛刺。如果是在正规厂家购买的2.5以上

9、大模孔的环模,可不进行,而对于模孔在2.5以下的环模,一般需要用油料在正常生产前“洗模”几分钟到二十几分钟为好,对于模孔粗糙度较差的环模,有时还需要在油料中搀入20%50%的细砂进行研磨后才能进行正常的生产。环模在使用过程中,一定要尽量避免物料中混有大块砂石、砂粒、铁块、螺栓及铁屑等硬质颗粒,以免加快环模的磨损或对环模造成过大的冲击,造成环模爆裂。如果有铁质进入模孔,一定要及时冲出或钻出。对于两面对称安装的环模,可在生产一定时间后反过来安装使用,以使环模磨损均匀。环模安装好后一定不要倾斜,不然会产生不均匀磨损;紧固环模的螺栓一定要达到所需要的锁紧扭矩,以避免螺栓剪断和环模损坏。环模的保养 对环

10、模进行合理的保养是保证环模能够正常工作和延长其使用寿命的必要措施之一,在平时工作中应注意做好以下几点:当需要更换环模时,应以非腐蚀性油料将原来的饲料挤出,以便再次使用时出料顺畅,并能防止模孔腐蚀。环模在使用一定的时间后,应定期检查环模内表面是否有局部凸出部分,并检查模孔导料口是否有磨平、封口或内翻等现象,如有,应用磨光机或其它工具将环模工作内表面凸出部分磨平,然后再对导料口进行倒角,对环模进行必要的修复,以延长环模的使用寿命。修复时应注意环模工作内表面最低处应高于越程槽底部2mm,并且修复后仍有压辊偏心轴调节余量,否则环模就应该报废。假如多数模孔被物料堵塞不出料,可以采取用油浸泡或用油蒸煮的办

11、法使物料软化,再重新进行制粒;如果仍然不能制粒,则可以用电钻将堵塞模孔的物料钻出后,再用油性物料加细砂研磨后使用。环模必须存放在干燥、清洁的地方,并做好规格标识,若存放于潮湿的地方,有可能会造成环模的腐蚀,从而降低环模的使用寿命或影响出料效果。关于调质 调质是饲料制粒和膨化工艺的重要组成部分,自饲料制粒机与饲料膨化机问世以来,饲料调质工艺与设备一直在不断的发展,特别是近20年国内外水产养殖的迅猛发展,由于水产饲料对耐水性等特殊的需求,使饲料调质工艺与设备突飞猛进的发展,出现了百花齐放的局面。为了更好地了解饲料调质对成品质量的影响,现对饲料调质的工艺与设备进行一些讨论。饲料调质的目的与调质机理

12、饲料调质就是饲料熟化过程之一,使生粉料转化为具有一定熟度的粉料,饲料良好的调质工艺和设备有利于饲料制粒和膨化成型。饲料调质的目的 有利于饲料制粒成型 ,使饲料易制粒成型,降低制粒的粉化率。提高饲料的消化吸收率,使蛋白及淀粉等组分的消化吸收率可提高10%12%。增加水产颗粒饲料在水中的稳定性,提高了淀粉的糊化度,使颗粒饲料在水中的稳定性可达30min,最长达36h,其稳定性主要是取决于配方和调质性能。当然制粒过程亦有助于提高水中稳定性。提高制粒机的产量,降低电耗 ,提高制粒机的产量达25%50%以上。减少压模和压辊的磨损,压模和压辊的寿命延长30%50%。破坏和灭杀有害因子达20%60%以上 调

13、质过程中可添加23种液态组分。由于调质过程是饲料经一定时间的热量和质量(水分)蒸汽处理,所以,高温的蒸汽对饲料热敏组分将产生不同程度的损失。如何既能减少热敏组分的损失,又能使饲料获得良好调质效果的工艺,至今尚未得到较好的解决,说明在饲料调质工艺和热敏组分的品种及添加工艺上,还很多课题需进行共同研究提高。现就饲料调质工艺设备进行如下分析讨论供参考 饲料调质的机理和调质过程 饲料调质就是饲料水热处理的过程,饲料调质实际是气相(蒸汽)、液相(细微水分散的水滴)的热量、质量向固相(粉状物料)传递热量和质量的过程。蒸汽在饲料调质过程中,它既是传热体,又是传湿体。而且,饲料在调质过程中热量和质量不断地发生

14、变化,调质亦是蒸汽中的热量和质量通过粉状颗粒物料的外表面向内部转移的过程。粉状物料的调质是蒸汽均匀围绕粉状物料的周围,靠近颗粒物料的表面形成界面层的过程。调质过程的传热和传质的速度,决定于蒸汽和粉状颗粒物料内部与界面层的温度梯度、速度梯度、湿度梯度、物料性质(密度、颗粒大小、含水量)等因素。当低温和含水分较低的固相粉状物料进入有一定转速的调质器内,蒸汽压力从200400kpa降为常压,蒸汽温度从142.9158降为100,这就开始进行生粉料的调质熟化。而物料熟化的关键是蒸汽的品质(指蒸汽含水量和焓值高低),由于蒸汽分为湿蒸汽,饱和蒸汽(干蒸汽),过热蒸汽(见图1)。三者的区别在于焓值(kJ/k

15、g)和温度不同。湿蒸汽焓值较低,湿蒸汽和饱和蒸汽(干蒸汽)的温度相同(100),但饱和蒸汽焓值高于湿蒸汽。而过热蒸汽的焓值、温度高于前两者。湿蒸汽是水(细微分散的水滴)和蒸汽的混合物。如果对其继续加热量,焓值增加,蒸汽温度并不升高,该热能供给细微分散的水滴汽化的热能(汽化潜热),供热能越多,焓值越高,蒸汽含水量越低,蒸汽含量越高。含蒸汽的程度为蒸汽的饱和度(干度),如蒸汽的饱和度(干度)x=0.8说明80%是蒸汽,20%是细微分散的水滴。在常压下蒸汽含量达到100%,即在100饱和温度下,蒸汽就成为不含有水的蒸汽,这蒸汽就是饱和蒸汽。当对该饱和蒸汽继续加热,饱和蒸汽的焓值和温度继续增加,该蒸汽

16、成为过热蒸汽,这过热蒸汽是制粒需要的蒸汽品质。如果随着蒸汽压力的增加,水的汽化温度亦随之提高,同样形成湿蒸汽,饱和蒸汽,过热蒸汽的需要温度亦相应提高(见图1曲线上移)。高温的过热蒸汽,焓值高,热量多,无含水,过热蒸汽进入调质器内压力从200400kpa降为常压,温度从142.9158降为100后,转化为饱和蒸汽或湿蒸汽。同时蒸汽释放热量,饱和蒸汽的饱和度亦逐渐下降,饱和蒸汽中含水量逐渐增加,并继续释放热量,但蒸汽温度仍保持100。此时,热蒸汽和冷的固相粉状物料相遇,由于热蒸汽和粉状物料之间既有温度梯度(温度差),又有湿度梯度(湿度差)。所以,热蒸汽和冷固相粉状物料之间就既产生热量传递,又有质量

17、(水分)的传递,热蒸汽与和固相粉状物料之间的焓值差,就是热量和质量传递的推动力。调质过程是蒸汽的热量、质量同时、同向经粉状物料的外表面向内部传热和传质的过程。而且,热蒸汽和粉状物料之间热量和质量在传递过程中总量是平衡的(略去调质器内空气温度上升和调质器机筒散发的热量)。在传热和传质过程中,蒸汽热量释放,使粉状物料温度上升到调质所需的温度(制粒8085,膨化95以上),饱和蒸汽的饱和度继续下降,饱和蒸汽中逐渐增加的含水量。当调质器常用的粉状物料调质温度为8085和蒸汽的饱和度(干度)X=0.60.9时,在该条件下,大致可认为粉状物料每升高11,其水分增加1%。使粉状物料吸收或外加水分后达到制粒、

18、膨化所需含水量(制粒17%18%,膨化28%30%)。为了确保制粒要求水分低,所以,采用过热蒸汽是合理的,如采用湿蒸汽易析出过多的水分,影响制粒。膨化宜用供汽量较多的饱和度(干度)较高的饱和蒸汽或较低的过热蒸汽,使粉状颗粒物料既能得到较多水分,又能得到较高温度,就符合了物料膨化的要求。在结构上制粒的调质器应隔热保温好,膨化调质器可以无隔热保温处理。调质的目标和要求 饲料粉料在调质过程中水和热共同作用下,使粉状颗粒物料软化。调质软化要求是,能使颗粒物料中心都达到软化为最佳,是调质的目标和要求。调质过程中蒸汽中的水蒸汽分压高于粉状颗粒物料表面水蒸汽分压,为此,粉状颗粒物料表面不断地吸收水蒸汽中的水

19、分(见图2,从14为物料吸收水的过程)。此时,粉状物料表面水分高于物料的内部水分(即湿度梯度)。为此,物料表面水分和内部水分之间有水分压差,并遵循水分压高的区域向水分压低的区域流动的规律。所以,粉状颗粒物料不仅表面吸附水分,而且,向内部转移。粉状颗粒物料在调质器的打板打击和翻动下,使蒸汽流动的速度梯度在物料颗粒表面和颗粒不同位置的表面明显增加。由于,物料颗粒表面不同部位的速度梯度不同,使物料颗粒表面的温度梯度和湿度梯度都增加。所以,加速了蒸汽与物料之间和物料表面与物料内部之间的传热和传质过程。同时打板对物料颗粒有一定的挤压,增加了水分向颗粒内部转移。水分转移的速度除水蒸汽分压外,还与颗粒的大小

20、、颗粒密度、颗粒状态及调质器转速等因素有关。如调质器转速高,粉状颗粒翻动激烈,速度梯度增加得更多,蒸汽与物料接触均匀度好。打击力大,蒸汽与粉状颗粒接触充分,水分向颗粒内部转移快,水分的添加量亦可增多。该水分的转移称之水分的内扩散,使粉状颗粒物料增加水分。该增加的水分为物理化学结合水和机械结合水(游离水亦称自由水),当物料调质水分在18%时,其中以物理化学结合水(渗透结合水)是粉状颗粒增加水分的主体。此外,有部分蒸汽水滴吸附在粉状颗粒表面而形成的机械结合水(游离水,自由水)。粉状颗粒原有的化学结合水(结晶水)与物理化学结合水及调质增加的物理化学结合水,就成为粉状颗粒物料在该温度下,相对湿的平衡水

21、分(见图3),该平衡水分随温度和相对湿度变化而变化。粉状物料的平衡水分随温度增加而下降,随相对湿度升高而增加。由于物料的物理化学结合水和适量表面的机械结合水(游离水即自由水2%3%)对制粒十分有利,从而能获得良好的制粒效果。粉状颗粒物料在调质器内的高温和水分两因素的共同作用下,经过适当时间的调质保温,淀粉糊化,蛋白变性,有害因子得到破坏和灭活,粉状颗粒物料软化,达到较佳的制粒效果。可以说,饲料调质是饲料制粒和膨化过程的十分关键工序,没有优良调质工艺和设备,就难以获得高产量、优质、低能耗的制粒、膨化效果。粉状颗粒物料在调质器的打板打击和翻动下,使蒸汽流动的速度梯度在物料颗粒表面和颗粒不同位置的表

22、面明显增加。由于,物料颗粒表面不同部位的速度梯度不同,使物料颗粒表面的温度梯度和湿度梯度都增加。所以,加速了蒸汽与物料之间和物料表面与物料内部之间的传热和传质过程。同时打板对物料颗粒有一定的挤压,增加了水分向颗粒内部转移。水分转移的速度除水蒸汽分压外,还与颗粒的大小、颗粒密度、颗粒状态及调质器转速等因素有关。如调质器转速高,粉状颗粒翻动激烈,速度梯度增加得更多,蒸汽与物料接触均匀度好。打击力大,蒸汽与粉状颗粒接触充分,水分向颗粒内部转移快,水分的添加量亦可增多。该水分的转移称之水分的内扩散,使粉状颗粒物料增加水分。该增加的水分为物理化学结合水和机械结合水(游离水亦称自由水),当物料调质水分在1

23、8%时,其中以物理化学结合水(渗透结合水)是粉状颗粒增加水分的主体。此外,有部分蒸汽水滴吸附在粉状颗粒表面而形成的机械结合水(游离水,自由水)。粉状颗粒原有的化学结合水(结晶水)与物理化学结合水及调质增加的物理化学结合水,就成为粉状颗粒物料在该温度下,相对湿度下的平衡水分(见图3),该平衡水分随温度和相对湿度变化而变化。粉状物料的平衡水分随温度增加而下降,随相对湿度升高而增加。由于物料的物理化学结合水和适量表面的机械结合水(游离水即自由水2%3%)对制粒十分有利,从而能获得良好的制粒效果。粉状颗粒物料在调质器内的高温和水分两因素的共同作用下,经过适当时间的调质保温,淀粉糊化,蛋白变性,有害因子

24、得到破坏和灭活,粉状颗粒物料软化,达到较佳的制粒效果。可以说,饲料调质是饲料制粒和膨化过程的十分关键工序,没有优良调质工艺和设备,就难以获得高产量、优质、低能耗的制粒、膨化效果。由于制粒、膨化工序中要求物料的含水率不同,制粒一般在17%18%,而膨化要求在28%30%。调质温度一般在8090,一般情况下,调质器内的蒸汽的饱和度在65%95%。此时,物料亦应有对应的平衡水分(达到调质条件下的平衡水分需要时间,否则不能达到其平衡水分的量),制粒、膨化在调质后的物理化学结合水的水分须在16%和22%25%左右,而机械结合水(游离水,自由水)有2%3%和3%5%左右。为此,两者对物料含水率要求不同,显

25、然对蒸汽要求有所不同,两者调质的工艺参数亦就不同,才能保证调质后的物料具有不同的水分增加量。对制粒要求的蒸汽是过热蒸汽为好,但蒸汽用量少。而膨化需要的蒸汽用量比制粒所用蒸汽量多,才能确保膨化物料调质后的高温和高水分(由于蒸汽调质时间较短,蒸汽调质后增加水分不够,难以达到该条件下的平衡水分,需在混合工段内加入水分)的要求。以上分析,尚未考虑蒸汽的利用率,制粒过程蒸汽耗量为调质物料流量的3.5%4%(包括其它加热和损耗达5%)左右。影响调质器调质效果的主要因素 调质是制粒或膨化不可缺少的工序,没有良好的调质系统,就没有优良制粒或膨化效果,而影响调质器调质效果的因素较多,主要取决于以下3种因素。1、

26、物料性质 2、调质器性能 3、调质蒸汽质量 一、物料性质 由于饲料的组分种类很多,其物料性质不相同,影响调质效果亦不同。根据其主体的组分,物料性质分为蛋白型、淀粉型、纤维型、脂肪型、热敏型等,在调质时作业参数应各不相同。蛋白型饲料 蛋白质具有亲水性,调质时水分不宜增加过多,否则易堵塞压膜孔,为此,采用过热蒸汽为好,因为蛋白型饲料调质是热量比增湿更重要。淀粉型饲料 淀粉需要高温、高湿的调质条件,所以,采用低压过热蒸汽或在混合机内加一些水分为宜。纤维型饲料 纤维持水性和粘结性差,为此水分不宜过高,一般13%14%,料温控制在5560左右。如果料温过高,压制的颗粒易产生裂缝,采用较低的过热蒸汽或在混

27、合机内加少量水分,以降低压制时的料温。脂肪型饲料 脂肪型饲料水分不宜过高,为此,采用较高的过热蒸汽有利于脂肪型制粒。热敏型饲料 热敏型饲料力求调质温度低,料温控制在60以下,水分不宜高,所以,可采用较低的过热蒸汽或在混合机内加少量水分,来降低料温是有效的。物料的颗粒大小和均匀程度 由于饲料的组分种类很多,而相同类型粉状物料的颗粒大小和均匀程度相差亦大,这对调质器操作带来一定的难度并提出了较高的要求。因为调质要求使每个颗粒的中心都软化,如小颗粒调质已达到要求时,则大颗粒调质尚未达到要求。如颗粒粒径相差越大,调质效果就差距越大。国外最新研究结论:提出了“粉状颗粒粒径对调质效果的影响”,力求物料颗粒

28、粒径尽量接近,便于取得均匀的调质效果。为此,对于大型饲料厂对调质要求高的品种,颗粒可先进行分级,再进行调质的工艺,来取得最佳调质效果,同时还能节约能耗。物料的水分 水分是影响调质效果的重要因素,在调质温度,调质时间相同情况下,物料的水分含量高,其调质效果优于水分低的物料。由于微生物对湿热的抗性较差,在蒸汽的作用下微生物能在周围介质中吸取高温的水分,因而,对微生物细胞蛋白质的凝固有促进作用,加速微生物死亡(湿热物料微生物死亡时间为较低水分物料的1/3)。所以,在物料的水分含量高的条件下沙门氏菌等霉菌及致病菌和植物血球凝结素、蛋白酶抑制剂有害因子破坏和灭活度高,同时淀粉糊化度亦高。调质器性能 调质

29、器结构 调质器是单层调质器,还是三层调质器;调质器是长型(34m)、还是短型(2m以下)调质器;是双筒调质器,还是单筒调质器;是等直径调质器,还是差动调质器;是大直径调质器,还是较小直径调质器;是常压调质器,还是高压调质器,其不同的结构对调质效果有较大的影响。如:对调质时间、调质液体组分的添加量、调质的熟度都不尽相同。所以,对于耐水性要求高的虾饲料,对于液体组分的添加量比例较高,宜用调质时间长、调质转速高的调质器,如差动筒调质器。耐水性要求不太高的鱼饲料用三层调质器、双筒调质器、差动调质器均可以,只要调节调质器桨叶的角度来控制调质时间,就可以满足调质要求,但要比较投资的经济性。一般禽畜饲料采用

30、单筒大直径调质器、双筒调质器都能达到使用要求。差动筒调质器、三层调质器、长型调质器、高转速调质器、双筒调质器具有良好的调质性能,其中差动调质器和双筒调质器调质均匀性最佳,因差动调质器解决或改善了纵向调质均匀问题。其它调质器一定程度有纵向调质不均匀问题依然存在。桨叶结构不同调质性能仍然有不同,早期调质器的桨叶名副其实是桨叶,而且逐步从较大面积的桨叶转化为小面积的桨叶,近期调质器的桨叶已成方形杆状(桨叶数量亦是影响调质效果重要因素,目前变化不大)。调质效果很大程度决定物料的翻动性能。桨叶大,面积就大,对物料输送有利,但相对静止的物料就多,翻动性能相对就差。所以,调质效果亦就差。为此,调质器的桨叶逐

31、步发展成有一定面积的方形杆状,桨叶数量增多,减弱了物料输送能力,延长调质时间,有良好的翻动性能,从而,提高了调质效果。调质器转速 相同直径的调质器转速对调质效果影响较大,转速高,使调质物料翻动性能加强,亦使蒸汽在物料表面的速度梯度加大,从而加速了调质速度和效果。同时,桨叶转速高,打击力大,加速了水分向物料内部扩散。所以,高转速的调质器具有较好的调质效果,液体组分的添加比例可达10%后,仍然有较好的调质效果。调质时间 任何热量传递,质量(水分)传递都需要时间,才能获得最好的调质。而且,不同成品物料粉碎的粒度不同,熟化程度要求不同,调质器的结构不同,则调质时间要求亦应有所不同。一般禽畜饲料调质的时

32、间为30s左右,鱼虾饲料的调质时间达220min。总之,调质时间对调质质量影响甚大。可通过调节调质器打板的角度、改变调质器长度和增设保温均质系统增加调质时间,使物料得到较好的调质效果。目前在制粒机上增设保温均质器,就可不同程度改善调质效果。调质蒸汽质量 由于不同质量的蒸气,其温度及含水率不同,过热蒸汽质量好,温度高及含水率低,而制粒调质和膨化调质对物料温度和物料含水率都有不同的要求,制粒工艺一般要求入制粒室的料温在7585,物料含水量在17%18%,制粒后的料温8085。膨化工艺一般要求入膨化腔的料温在95以上,物料含水量在28%30%为宜,膨化腔内的料温达130140以上。由于蒸汽调质后物料

33、难以达到28%30%的水分,所以,膨化工艺必要时在混合机或调质器内加入水,才能使物料的水分达到28%30%的要求。在调质器内加水,因水对物料作用时间短,形成物理化学结合水达不到25%的要求,很大一部分是机械结合水(游离水,自由水)。对制粒而言,如要增湿时,在混合机内加水比调质器内加水好,使物料增加的水易成物理化学结合水。而一般制粒和膨化宜在调质器内加水,因水易从颗粒中蒸发,稳定性较差,颗粒在冷却或干燥过程中易失去。外加的水对热敏型物料十分有益。总之,调质是制粒、膨化的重要的环节,由于物料组分不同,饲料的成品不同,调质器不同,调质的各种参数亦应有所不同。调质器的发展动向 由于调质器转子转速高的调

34、质速度及调质时添加液体的数量均比转子转速低的要好,所以目前调质器的发展动向是向高速、强力调质器方向发展。调质后有良好的保温均质时间,使调质效果和水平得到一个较大的提高。随着高速、强力调质器的应用,饲料消化吸收率的提高,饲料的配方亦应有所调整,在能达到最佳养殖效果和最大经济的效益。否则,将可能会浪费原料或产生一些不良反应如脂肪肝等。调质器的种类及工作原理 1、单轴桨叶式调质器 这种调质器是国内外饲料加工中使用最早、应用量最广的调质器,结构较简单,其圆柱型壳体中间装有一条搅动轴,搅动轴上安装多个可以调节、更换的浆叶。调质器工作时,粉料颗粒在桨叶搅动下进行两个方向的运动,一是绕轴转动,二是沿轴向推移

35、,运动轨迹近似于螺旋线。一般调质器的转速为150-450r/min,物料的推进速度与轴转速和浆叶的拾物角度有关,在转速一定的条件下,可以通过调整浆叶的拾物角度来控制物料的调质时间,如果将浆叶的角度减小到比较中间的位置,即与浆叶轴成为750850的夹角,这样就可以减弱每个浆叶对物料的推出作用从而延长物料在调质室内的滞留时间。一般单轴桨叶式调质器长2-3米,粉料可以在调质室内滞留20-30秒,熟化度达20%左右,基本可以满足一些普通颗粒饲料的调质要求。2、蒸汽夹套调质器 此类调质器大体结构与单轴桨叶式调质器相似,不同的是壳体采用双层夹套,夹套内通入蒸汽起保温作用。这种蒸汽夹套调质器在工作中对粉料的

36、加热作用有限,因为热量只通过调质器的的表面传给粉料,而这一表面积与容量之比通常很低,加之一般调质粉料的导热性能差,以至于没有多少热量可以传递给粉料,但是蒸汽夹套阻止了调质室与室外常温大气直接进行热交换,有效地减少了热损失,使调质器内部能保持较高温度,因此在寒冷的冬天和气温较低的地区使用这种调质器作用较显著。3、二通、三通调质器 为了延长和控制粉料在调质器内的滞留时间,在制粒机的上方叠加2-3个标准的单轴桨叶式调质器,就是我们通常所说的二通、三通多层调质器。这种调质器的特点是互相串联,有多重蒸汽注入口,工作时粉料依次通过各个调质器,延长了粉料的调质时间,物料与蒸汽能更充分接触混合,可将粉料的熟化

37、度提高到40%左右。4、双轴异径差速浆叶式调质器 双轴异径差速浆叶式调质器又称DDC预调质器,它是在单轴浆叶式调质器的基础上发展起来的,其壳体由半径不同的两个大半圆焊接而成,壳体内装有两根转速不同的叶片搅动轴,壳体中部设有多个可单独调节蒸汽量的蒸汽注入口和液体添加口,工作时由于双轴转速不等、旋向相反、浆叶差速搓动运动,使粉料和添加液从两搅动轴中间向上抛起并与蒸汽一起形成对流,又充分剪切和交错混合,粉料在桨叶的作用下,局部运动轨迹呈“8”字型,并绕轴旋转向前推进,运动路线大为增长,因此粉料的轴向移动速度有更大的可调范围。一般长2米左右的调质器,调质时间可以控制在几十秒至240秒,可满足特殊颗粒饲

38、料高熟化率和高杀菌率的要求,熟化度通常可达50-60%,同时具有较高相对运动的浆叶能相互“洗刷”,使这一类型的调质器有较高的自清洁能力,粉料在调质室的残留现象也有所改善。5、膨胀器 膨胀器也称EXPANDER,国内又名环隙挤压机,其工作原理与挤压机相同,都是用机械能来增加制粒之前加入粉料中的热量。粉料在压力的作用下被迫通过螺杆和压模之间的狭窄间隙,产生压实和剪切,与螺杆和缸体发生激烈的摩擦,并产生大量的热量,以此达到熟化、杀菌和改善制粒状况的目的。不同之处在于膨胀器的压模间隙可调,工作中可以通过调整压模间隙,控制粉料在调质室的挤压、摩擦、剪切强度,从而控制扩散入粉料的热量。一般膨胀器可以对物料

39、产生40帕的压力和120-130的温度,物料在这些条件下滞留3至5秒,非常快的发生物理变化,使物料的淀粉糊化程度和蛋白质的可溶度都得到显著提高,然而,物料中的热敏性营养成分也会在这一高温过程中受到较大损失。6、通用颗粒熟化机 通用颗粒熟化机即Universal Pellet Cooker,简称PC,是由美国Wenger制造厂首先提出的新型调质制粒设备,这一系统基本上是由高效的调质器和一台短滞留时间的改进型挤压机组合而成。在工作过程中,调质器提供滞留和接触时间以优化饲料的质量,而改进的挤压机则迫使粉料通过具有适当大小空洞的压模从而使其形成颗粒饲料。这种设备的淀粉糊化程度相当高,一般大于70%,饲

40、料颗粒品质优良,耐水持久,即使在粉料中加入大于10%的脂肪,所生产颗粒饲料的质量仍然可以接受。此系统还有一个特点就是更换压模非常简易方便。目前这种调质制粒设备在水产饲料、幼畜饲料和宠物饲料方面有广泛的应用前景 除了上述的调质器外还有压力调质器,其基本概念是提高调质室的工作压力,从而温度也随之上升,高压可以迫使水分和热量更快更彻底地进入粉料颗粒内部,从而改善调质效果。另外还有调质罐等。常用调质器的选择 一般普通的畜禽饲料厂可选用单轴浆叶式调质器,保证30秒左右的调质时间,可使淀粉糊化度达20%左右,基本满足普通畜禽饲料的加工要求;水产饲料厂应选用二级、三级调质器或双轴异径差速浆叶式调质器,确保调

41、质饲料的熟化度达到50%以上。膨胀器又称为超级调质器,用膨胀器膨化大豆和玉米等原料可提高饲料的适口性及消化率,同时改变饲料内的抗原物质和抗营养因子;还可以用膨胀器配合制粒机进行二次制粒,使粉料先通过膨胀器经螺杆和压模的强烈挤压和剪切形成短时高温,促使淀粉充分糊化,改善颗粒质量;一些饲料企业直接使用膨胀器生产乳猪料和肉鸡饲料等片状饲料,营养全面、适口性好,有较大的市场空间。浆叶式调质器的正确使用 目前颗粒饲料的调质器最常用的是单轴浆叶式调质器和双轴异径差速浆叶式调质器,下面从几个方面谈谈这些调质器在使用中应注意的问题。1、蒸汽压力和添加量的控制 蒸汽是调质时水分和热量的来源,因此其质量的好坏直接

42、影响调质的效果,浆叶式调质器在安装时必须合理的设计蒸汽管路,使用稳定可靠的蒸汽减压阀和疏水阀,保证进入调质器的是压力稳定的干饱和蒸汽;蒸汽应从切线进入调质器,沿轴向喷出使之与粉料混合更强烈;蒸汽方向不可垂直对着调质器轴,那样不仅达不到好的混和效果,反而使蒸汽对调制质器轴产生“汽蚀”而割断调质器轴。调质时根据原料和配方以及气候的变化选用合适的蒸汽压力和添加量,湿度大的季节、原料水分含量高时应适当提高蒸汽压力,减少蒸汽添加量;干燥季节、原料水分含量低时应降低蒸汽压力、增加蒸汽添加量;夏天室温较高可降低蒸汽压力,因为低压蒸汽释放热量和水分更为迅速;冬季气温低可提高蒸汽压力,增强调质温度,减少蒸汽管道

43、中的冷凝水,有助于粉料的熟化。2、调质时间的控制 (1)单轴浆叶式调质器调质时间的控制 一般单轴浆叶式调质器调质时间短,可同时采用减小搅动轴转速和改变浆叶角度的方式来增加调质时间。搅动轴的驱动马达采用变频器或电磁调速器来控制,浆叶的调节建议在进料口处(即调质器浆叶轴从开始端到后1/4或1/3处)的浆叶保持在出厂时的设置,这样可以确保粉料被迅速向前驱赶进入与调质室;浆叶角度的调整应在调制器长度方向1/3以后开始,对于单轴浆叶式调质器并非转越慢、浆叶角度越垂直于搅动轴越好,这样虽然增加了调质时间,但过慢的转速和几乎垂直于搅动轴的叶片不足以使粉料抛起,这样粉料会沉积在调质室底部而被轻柔推过调质室,蒸

44、汽在调质时上部自由流动而不会与粉料发生强烈的混合,效果差,而且由于粉料的运动速度过低,更容易在调质室壳体周围形成粘壁滞留,因此一般单轴浆叶式调质器转速不应低于150r/min,最低不低于100r/min,用变频器或电磁调速器控制转速的生产过程中,调质器也不宜长时间工作在超低的转速下。(2)双轴异径差速浆叶式调质器调质时间的控制 这种调质器单独通过对其浆叶角度的调节可以使调质时间在几十秒至240秒内变动,所以一般工作中不需要改变桨叶轴的转速,浆叶角度的调节可以从入料口处调质器长度方向上1/3以后的浆叶开始,如需增加调质时间,可增加大径低速正浆叶片与桨叶轴的夹角。双轴异径差速浆叶式调质器虽然粘壁滞留现象有所改善,但是有的物料粘壁滞留现象还是比较严重,此时可以适当减小小径高速反浆叶片与搅动轴的的夹角,以此来加剧反浆叶片对粉料的逆向搓动,减少残留量。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(制粒机环摸及调质课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|