1、糖果工作室 原创 欢迎下载!温州市中考数学05-12年压轴题汇编一、T16汇编1、(2005年16题)在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4_。s3S2S1NHGFMDABCEm2、(2006年16题)如图,在直线m上摆放着三个正三角形:ABC、HFG、DCE,已知BC=CE,F、G分别是BC、CE的中点,FMAC,GNDC设图中三个平行四边形的面积依次是S1,S2,S3,若S1+S3=10,则S2= .3、(2007年16题)意大利著名数学家斐波那契在研究兔子繁殖问题时
2、,发现有这样一组数:1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于它前面两个数的和。现以序号周长6101626这组数中的各个数作为正方形的长度构造如下正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如下矩形并记为、.相应矩形的周长如下表所示:若按此规律继续作矩形,则序号为的矩形周长是。(第16题图)OA1A2A3A4ABB1B2B3144、(2008年16题)如图,点在射线上,点在射线上,且,若,的面积分别为1,4,则图中三个阴影三角形面积之和为 5、(2009年16题)如图,已知正方形纸片ABCD的边长为8,0的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠
3、,使EA恰好与0相切于点A(EFA与0除切点外无重叠部分),延长FA交CD边于点G,则AG的长是 .6、(2010年16题)勾股定理有着悠久的历史,它曾引起很多人的兴趣l955年希腊发行了二枚以勾股图为背景的邮票所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理在右图的勾股图中,已知ACB=90,BAC=30,AB=4作PQR使得R=90,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么PQR的周长等于 7、(2011年16题)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1)图2由弦图变化得到,它是由八个全等的直角三角
4、形拼接而成记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是 8、(2012年16题)如图,已知动点A在函数的图象上,轴于点B,轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC。直线DE分别交轴于点P,Q。当时,图中阴影部分的面积等于_.二、T24汇编1、(2005年24题)(本题12分)如图,已知四边形ABCD内接于O,A是的中点,AEAC于A,与O及CB的延长线分别交于点F、E,且,EM切O于M。 求证:ADCEBA; 求证:AC2BCCE; 如果AB2,EM3,求cotCAD的值。2、(2006年2
5、4题)(本题14分)如图,在 ABCD中,对角线ACBC,AC=BC=2,动点P从点A出发沿AC向终点C移动,过点P分剐作PMAB交BC于M,PNAD交DC于N连接AM设AP=xB M C APND(1)四边形PMCN的形状有可能是菱形吗?请说明理由;(2)当x为何值时,四边形PMCN的面积与ABM的面积相等?3、(2007年24题)(12分)中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PEBC交AD于点E,连结EQ。设动点运动时间为x秒。(1)用含x的代数式表示AE、DE的长度;(2)
6、当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;(3)当为何值时,为直角三角形。4、(2008年24题)(本题l4分)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);ABCDERPHQ(第24题图)(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由5、(2009年24题)(本题l4分)如图,在平面直角坐标系中,点A(,0),B(3,2),(0,2)动点D以每秒1个单位的速度从
7、点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动过点E作EF上AB,交BC于点F,连结DA、DF设运动时间为t秒(1)求ABC的度数;(2)当t为何值时,ABDF;(3)设四边形AEFD的面积为S求S关于t的函数关系式;若一抛物线y=x2+mx经过动点E,当S时,连结CC,设四边形ACCA 的面积为S,求S关于t的函数关系式;当线段A C 与射线BB,有公共点时,求t的取值范围(写出答案即可)7、(2011年24题)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(4,0),点B的坐标是(0,b)(b0)P是直线AB上的一个动点,作PCx轴,垂足为C记
8、点P关于y轴的对称点为P(点P不在y轴上),连接PP,PA,PC设点P的横坐标为a(1)当b=3时,求直线AB的解析式;若点P的坐标是(1,m),求m的值;(2)若点P在第一象限,记直线AB与PC的交点为D当PD:DC=1:3时,求a的值;(3)是否同时存在a,b,使PCA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由8、(2012年24题)如图,经过原点的抛物线与轴的另一个交点为A。过点作直线轴于点M,交抛物线于点B。记点B关于抛物线对称轴的对称点为C(B、C不重合)。连结CB,CP。(1)当时,求点A的坐标及BC的长;(2)当时,连结CA,问为何值时?(3)过点P作且,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并定出相对应的点E坐标;若不存在,请说明理由。第 8 页 共 8 页