中考数学压轴题专项汇编专题8“PA+k-PB”型的最值问题.doc

上传人(卖家):2023DOC 文档编号:5696632 上传时间:2023-05-04 格式:DOC 页数:4 大小:166.50KB
下载 相关 举报
中考数学压轴题专项汇编专题8“PA+k-PB”型的最值问题.doc_第1页
第1页 / 共4页
中考数学压轴题专项汇编专题8“PA+k-PB”型的最值问题.doc_第2页
第2页 / 共4页
中考数学压轴题专项汇编专题8“PA+k-PB”型的最值问题.doc_第3页
第3页 / 共4页
中考数学压轴题专项汇编专题8“PA+k-PB”型的最值问题.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题8 “PAkPB”型的最值问题破解策略“PAkPB”型的最值问题,当k1时通常为轴对称之最短路径问题,而当k0时,若以常规的轴对称的方式解决,则无法进行,因此必须转换思路1 当点P在直线上如图,直线BM,BN交于点B,P为BM上的动点,点A在射线BM,BN同侧,已知sinMBNk过点A作ACBN于点C,交BM于点P,此时PAkPB取最小值,最小值即为AC的长证明 如图,在BM上任取一点Q,连结AQ,作QDBN于点D由sinMBNk,可得QD kQB所以QAkQBQAQDAC,即得证2 当点P在圆上如图,O的半径为r,点A,B都在O外,P为O上的动点,已知rkOB在OB上取一点C,使得OC

2、kr,连结AC交O于点P,此时PAkPB取最小值,最小值即为AC的长证明 如图,在O上任取一点Q,连结AQ,BQ,连结CQ,OQ则OC kOQ,OQ kOB而COQQOB,所以COQQOB,所以QC kQB所以QA kQB QAQCAC,即得证例1如图,矩形ABCD中,AB6cm,BCcm,对角线AC、BD相交于点O,COD关于CD的对称图形为CED若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以15cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走

3、完全程所需的时间解:由题意可得,点Q运动到带你A的时间为过点E作EFAD,交AD的延长线于点F则EF3cm,AFcmAEcm,从而sinEAF过点P作PGAD于点G,则有PGPA过点O作OHAD于点H,则OHCD3而OPPAPOPGOH,所以t最小3s显然AHAF,所以APAEcm综上所述,当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为cm,点Q走完全程所需的时间为3s例2在平面直角坐标系xOy中,抛物线yx22mxm2m的顶点为C直线yx2与抛物线交于A、B两点,点A在抛物线的对称轴左侧抛物线的对称轴与直线AB交于点M,作点B关于直线MC的对称点B以M为圆心,MC为半径的圆上存在一

4、点Q,使得QBQB的值最小,则这个最小值为多少?解:yx22mxm2m(xm)2m顶点C的坐标为(m,m),从而点M的坐标为(m,m2)连结MQ,则MQMC2联立方程组可得点A(m1,m1),B(m2,m4)BM,即MQMB取MB的中点N,则MNMBMQ连结QN,易证QMBNMQQNQB连结BN,则QBQBQBQNBN易得直线AB与y轴的夹角为45,所以AMC45连结BM,则BMB2AMC90在RtBMN中,BN即QBQB的最小值为1. 如图在ACE中,CACE,CAE30,O经过点C,且圆的直径AB在线段AE上,设D是线段AC上任意一点(不含端点),连接OD,当CDOD的最小值为6时,求O的直径AB的长2如图,在ABC中,B90,ABBC2,以点B为圆心作B与AC相切,P为B上任意一点,求PAPC的最小值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 中考复习 > 真题分类汇编
版权提示 | 免责声明

1,本文(中考数学压轴题专项汇编专题8“PA+k-PB”型的最值问题.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|