1、江苏五年新高考解析几何解答题汇总(2008)18.设平面直角坐标系中,设二次函数的图象与坐标轴有三个交点,经过这三个交点的圆记为C。(1) 求实数的取值范围;(2) 求圆的方程;(3) 问圆是否经过某定点(其坐标与无关)?请证明你的结论。【解析】本小题考查二次函数图象与性质、圆的方程的求法。(1)(1) 设所求圆的方程为。令得又时,从而。所以圆的方程为。(3)整理为,过曲线与的交点,即过定点与。(2009)18(本小题满分16分)在平面直角坐标系中,已知圆和圆xyO11.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线,它们分别
2、与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标.18.【解析】(1) 或,(2)P在以C1C2的中垂线上,且与C1、C2等腰直角三角形,利用几何关系计算可得点P坐标为或。 (2010)18、(本小题满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。解析 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题
3、的能力。满分16分。(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由,得 化简得。故所求点P的轨迹为直线。(2)将分别代入椭圆方程,以及得:M(2,)、N(,)直线MTA方程为:,即,直线NTB 方程为:,即。联立方程组,解得:,所以点T的坐标为。(3)点T的坐标为直线MTA方程为:,即,直线NTB 方程为:,即。分别与椭圆联立方程组,同时考虑到,解得:、。(方法一)当时,直线MN方程为: 令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法二)若,则由及,得,此时直线MN的方程为,过
4、点D(1,0)。若,则,直线MD的斜率,直线ND的斜率,得,所以直线MN过D点。因此,直线MN必过轴上的点(1,0)。MPAxyBC(2011)18、(本小题满分16分)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN时,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k0,求证:PAPB解析:(1)M(-2,0),N(0,),M、N的中点坐标为(-1,),所以(2)由得,AC方程:即:所以点P到直线AB的距离(3)
5、法一:由题意设,A、C、B三点共线,又因为点P、B在椭圆上,两式相减得:法二:设,A、C、B三点共线,又因为点A、B在椭圆上,两式相减得:,ABPOxy(第19题)(2012)19(本小题满分16分)如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中e为椭圆的离心率(1)求椭圆的标准方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值19. (1) 由题且,且,由,解得,从而,(2) (i)设,则,令,则,由与消得,将代入前式并整理得且,解得,由题,所以直线的斜率为(ii), ,于是,故,由在椭圆上知,从而,同理,又由前面知,为定值