1、激光加工技术在晶硅太阳电池制造中的应用深圳市大族激光科技股份有限公司深圳市大族激光科技股份有限公司2010年年3月月18日日卢建刚卢建刚 高级工程师高级工程师13798445745激光在晶体硅太阳能行业应用简介激光在晶体硅太阳能行业应用简介激光掺杂技术(激光掺杂技术(Laser Doping)激光钻孔技术激光钻孔技术(Laser drilling)激光刻边技术激光刻边技术(Laser Edge Isolation)激光烧结技术激光烧结技术(Laser Fired Contacts)钝化介质膜烧蚀技术钝化介质膜烧蚀技术(Dielectric layer Ablation)激光工艺 应用现状 工业
2、大量应用 工业部分应用R&D实验室激光刻边(Edge isolation)埋栅极刻槽(LGBC)制绒 (Texturing)ID 标记 (Marking)钝化介质膜烧蚀(ablation)掺杂 (Doping Diffusion)切割 (cutting)背结电池钻孔(drilling)烧结 LFC(laser fired contacts)RISE-EWT(LFC,Structuring,drilling)电池检测(wafer inspection)缺陷修复(Defection Repair)电池分割(Singulation)焊接 (Soldering)应用背景:应用背景:选择发射极太阳电池选
3、择发射极太阳电池(Selective Emitter SE)要使硅电池正面与金属形成良好的欧姆接触,需要对与金属接触的过渡区域实现重掺杂 理想的掺杂浓度分布应该是:理想的掺杂浓度分布应该是:光收集区域轻掺杂光收集区域轻掺杂 电极接触区重掺杂电极接触区重掺杂 选择发射极作用:电池有较高的光谱响应,有较高的开路电压和短路电流 发射区与电极有良好的欧姆接触,提高了 填充因子指标选择发射极结构示意图 A:Etch back processB:Diffusion Masking processD:LGBC processC:Self-doping paste processSingle step las
4、er doping 单步激光掺杂法单步激光掺杂法 激光作用在掺杂源(钝化层)和硅片表面,预涂层的掺杂原子扩散到硅基材表面,当激光移开后,硅基材冷却并结晶,与掺杂原子形成合金,称为LIMPID法(laser-induced melting of pre-deposited impurity)激光在整个过程中只起到了局部熔化材料,同时掺杂源在一定的热力学条件下快速扩散到硅表面,形成重掺杂区。(来自来自Stuart WENHAM)不需用于扩散掩膜设备,简化工艺流程;不需整体高温处理,避免了产生高温晶格缺陷和杂质缺陷;电极线宽窄,提高了电池有效吸光面积;可将钝化层一并去除,未去除的钝化层仍可作为后续的
5、掩膜;整套工艺设备简单,不产生有毒物质,利于环保;(来自Stuart WENHAM)(来自Werner)1 Finlay Colville Laser-assisted selective emitters and the role of laser doping,Photovoltaics International 20092 Dave Clark Lasers in SOLAR Cell production 2009/103 Ulrich et.al Selective emitter by laser doping from phosphosilicate glass 24th Eu
6、ropean PVSolar Energy Conference and Exhibition 21-25 September 2009 Hamburg Germany4 UNSW laser doping selective emitter .au5 Stuart Ross Wenham Self aligning method for forming a selective emitter and metallization in a solar cell US Patent 6429037B1 20026 Malte Schulz-ruhtenberg,Direct laser dopi
7、ng for high-efficient solar cells ICALEO 2009 M9047 D.S.Ruby Recent progress on the self-aligned selective-emitter silicon solar cell 26th IEEE 19978 Daniel Kary et al laser-doped silicon solar cells by laser chemical processing(LCP)Exceeding 20%efficiency 33rd IEEE 12-16 May 2008 St.Diego,CA9 M.C.M
8、orilla,et al Laser induced ablation and doping process on high efficient silicon solar cells10Sameshima,T.&Usui,S.1987“Analysis of dopant diffusion in molten silicon induced by a pulsed Excimer laser”,Jap.Journal of Appl.Phys.,Vol.26 11 张陆成等 激光热效应在高效太阳电池工艺中的应用 2009年5月 激光与光电子学进展12 Turner,et al 1981 s
9、olar cells made by laser induced diffusion directly from phosphine gas Appl.phys.Lett.,Vol.3913Guo,J.H et al 2006 laser formed electrodes for solar cells Patent WO/2006/005116 A1 14 A.Grohe Novel laser technologies for crystalline silicon solar cell production SPIE Vol 7202 200915Mahir Okanovic et.a
10、l Influence of different laser parameters in laser doping from phosphor-silicate glass 24th EPVSEC16 Gee.J et.al Buried contact solar cells with self-doping contacts US Patent 20050172998应用背景:应用背景:背接触太阳电池背接触太阳电池Back contact cell来自 Frauhofer ILT(来自Xsil)(来自Xsil)(来自Xsil)1 Nils Peter Harder Laser proces
11、sed high-efficiency silicon RISE-EWT solar cells and characterisation 2009 01 Solid state physics2 ROFIN Presentation 2008 093 High throughput laser percussion Interconnect Microvia Process Xsil Company EMC 3D 20074 High peak power solid state laser for micromachining of hard materials SPIE 2003 5 D
12、evices and drilling and removing material using a laser beam US patent 200900451766N.brinkmann et al Epitaxy-through-hole processes for epitaxy wrap-through solar cells 24th EUPVSEC 20097A.A Mewe et al MWT plug Metallization Improved performance and process stability of PUM and ASPIRE Cells 23rd EUP
13、VSEC 2008方法 优点 缺点等离子蚀刻技术1:技术成熟,产量大2:一次设备投资成本低1:电池崩边,缺角不良率高;2:过刻、钻刻工艺不稳定,影响电池效率;3:需要消耗较多的化学物质;4:较高人工费用,较高的运行成本激光刻边(边缘隔离)1:工艺十分稳定,并联电阻和电池效率十分稳定;2:可以实现在线生产;3:非接触式加工对材料损伤小,绿色加工,利于环保;4:运行成本低,设备维护费用极低1:一次投资费用高2:自动化设备程度高湿法蚀刻1:可以将去PSG和背面单面蚀刻作为整体进行,2:工艺相对稳定1:设备十分昂贵2:需要安装有毒物质处理系统激光去边示意图来自COHERENT应用背景:应用背景:标准丝
14、网印刷太阳电池标准丝网印刷太阳电池Standard silicon solar cell图4不同去边结方法的电池各指标比较11 图5激光和等离子蚀刻的电池指标比较3 类别XXXXXVoc VIscAFF%Eta%Rshunt 激光工艺第1批50片0.6300.0025.360.0477.370.9517.0917.090.250.25159159激光工艺第1批50片0.6300.0025.360.0477.501.1117.1017.100.350.35324324最好等离子工艺 第1批200片0.6300.0035.380.0477.691.1917.1917.190.350.352121激
15、光工艺第2批50片0.6290.0025.380.0576.821.1316.9816.980.190.199898标准等离子工艺第2批50片0.6270.0015.400.02 76.12 0.616.8416.840.150.156565(来自E.Schneiderlochner)(来自RPreu)激光仅在初期需要较高的投资成本,但由于运行费用极低,总体成本仍然很低 Monte Carlo模型考虑 5年使用期,将单片成本 分为消耗费、设备成本、设备利用率和维护费四部分;数据表明:湿法蚀刻摊到每一部分的成本都相当;等离子具有最高消耗费用,其次设备成本;激光设备维护费、消耗费和利用率几乎可以忽
16、略;,单片费用主要是设备成本;(来自Finally&O.Papathanasiou)(来自E.Schneiderlochner)Hauser分析利用激光刻边并入Inline 是成本最低的一种方案;Correia指出:等离子的主要限制集中在Batch Processing以及Labour Cost,其它如用化学气体,对环境影响等因素均需考虑,总之,激光依然具有成本优势;Roth认为大多数电池厂宁愿使用激光,主要在于激光易实现自动化在线生产;此外,激光刻边十分稳定,其结果是Rshunts值稳定;因此能有效地避免损失;究竟采用何种去边工艺还需要电池生产商对每片ROI 分析决定,R.Preu在对三种去
17、边方法比较得出:导入激光可以取得最低的投资成本;等离子蚀刻经常出现Rshunts值不稳定,低Rshunts值电池片如果再采用激光刻边,就可提高Rshunts值而不会影响电池效率,真正做到每片电池是良品。1 Finlay Colville Laser scribing tools edge in front,Global solar technology 2009 3-4 P.122 Ing.Ludger et al Analysis of different laser concepts for edge isolation of crystalline solar cells Proceed
18、ings 23rd EU PVSEC Valencia3 E.Schneiderlochner et al Review on different technologies for industrial solar cell edge isolation Proceedings 21st.European PVSEC,Dresden,20064 Ronald et al Excimer laser junction Isolation of crystalline silicon solar cells Transactions on electron devices IEEE pp353-3
19、54 February 1990 5 E.Schneiderlochner et al Scanning Nd:YAG laser system for industrially applicable processing in silicon solar cell manufacturing Photovoltaic Energy Conversion,20036 M.D Abbott Laser isolation of shunted regions in industrial solar cells 2007 7 A Hauser Comparison of different tec
20、hniques for edge isolation 17th European Photovoltaic Solar Energy Conference and Exhibition Munich 20018 S.A.G.D Correia et al Selective laser ablation of Dielectric layers 9 S.Roth,In solar Industry,pp 26-27 December 2008 10 E.Schneiderlochner at Conference on PhAST San Jose 200811 RPreu Innovativ
21、e and efficient production processes for silicon solar cells and Modules SOLPRO IV 19th EPSEC Paris P978-981 200412 RPreu et al at 20th EUROPEAN PVSEC Barcelona,200513Finlay Colville Laser manufacturing processes&the solar roadmap CLEO PhAST 200814A Schoonerderbeek et al In proceeding of 69th Laser
22、material processing Conference pp85-90 2007 15 S.A.G.D Correia et al at 21st European PVSEC,Dresden 200616O.Papathanasiou&S.chunduri,in etching equipment surveys within photon international December 2007&200817晶体硅太阳能电池产业化技术现状与发展展望( 中国新能源网)当脉冲高峰值能量突破铝膜熔化阈值后,铝膜会快速熔化,在熔化过程中如果继续给予同样的能量密度,铝继续吸收能量形成增强等离子体
23、云并迅速汽化,当关闭激光后,铝并不像预期的均匀扩散到硅材料表面,而是大部分铝已经蒸发,无法形成较好的欧姆接触。激光和金属作用时,首先需要较高峰值能量突破金属的熔化阈值(对高反材料尤为重要),由于既要熔化铝(不能汽化),又要熔化硅,同时铝原子还要穿过钝化层扩散到硅表面能形成共熔;现有资料论述比较笼统,即使R.preu也未深入解释LFC原理,更多地只是从实验方法来阐述;应用背景:应用背景:背点接触太阳电池背点接触太阳电池Back point contact cell来自来自E.Schneiderlochner 博士论文博士论文背面钝化层质量,钝化层结构、种类、材料厚度;硅电池材料厚度对LFC工艺的
24、影响;铝膜表面状况,厚度和纯度对实施LFC工艺的影响;重复频率、光斑尺寸、焦深、焦点位置、脉冲能量大小(单脉冲/多脉冲)对电池指标影响激光参数优化后,点阵间距、材料种类对电池指标影响光束质量、脉冲宽度、聚焦光斑光斑能量分布对电池指标影响实验室研究主要是小尺寸电池(20mmX20mm),利用振镜扫描不存在任何问题;大面积尺寸(125mmx125mm)必须考虑光学系统对加工效果的影响;扫描范围越大,电池表面点阵一致性会变差,会影响电池性能激光方面,有必要研究脉冲波形对形成良好的硅铝共熔体产生的影响,需改进激光器设计,包括对波形的控制或者优化光斑能量密度分布电池方面,LFC工艺本身并没有问题,但若电
25、池前后道工艺搭配不好,电池效率则无法提高,这可能需要改进前后道工艺来适应LFC工艺;LFC也可能和doping和isolation工艺类似(如Doping后P原子浓度过低,isolation后并联电阻值偏低),需要前后道工艺搭配来自来自COHERENT不同材料在三种波长激光的吸收系数来自来自COHERENT应用背景:背点接触/正面SE电池Back point contact&SE Cells355 30ns材料SiO2532 10ps 材料SiO2来自Peter Engelhart来自来自Peter Engelhart来自来自Peter Engelhart来自来自Peter Engelhart
26、1 E.Schneiderlochner laser fired rear contacts for crystalline silicon solar cells progress in photovoltaics research and applications 2002 p29-342 E.Schneiderlochner LFC 博士论文 2004年 Germany3 Ralf Preu E.Schneiderlochner Method of producing a semiconductor-Metal contact through a dielectric layer US
27、patent 20040097062 A14 Jan-frederik Nekarda et al Aluminum foil as backside metallization for LFC cells 22nd EPSEC 20075 M.tucci laser fired back contact for silicon solar cell 2008 thin solid film p6767-67706 E.Schneiderlochner Scanning Nd:YAG Laser system for industrially applicable processing in
28、silicon solar cell manufacturing 2003 3rd world conference on photovoltaic energy conversion Osaka Japan7 Modeling of solar cell with Laser fired contact by using C-Surpem and APSYS 20098 A.Grohe laser technology for contacting high efficiency silicon solar cells the laser fired contacts approach(white paper from internet)9 Marc Hofmann et al Recent developments in rear-surface passivation at Fraunhofer ISE 2009 P1074-107810 A.Grohe et al Boundary condition for the industrial production of LFC cells p1032-1035 IEEE 2006感谢您的聆听和关注!