根与系数的关系练习题(DOC 6页).doc

上传人(卖家):2023DOC 文档编号:5749522 上传时间:2023-05-06 格式:DOC 页数:6 大小:111.50KB
下载 相关 举报
根与系数的关系练习题(DOC 6页).doc_第1页
第1页 / 共6页
根与系数的关系练习题(DOC 6页).doc_第2页
第2页 / 共6页
根与系数的关系练习题(DOC 6页).doc_第3页
第3页 / 共6页
根与系数的关系练习题(DOC 6页).doc_第4页
第4页 / 共6页
根与系数的关系练习题(DOC 6页).doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、文档从网络中收集,已重新整理排版.word版本可编辑.欢迎下载支持.一元二次方程根与系数的关系1、如果方程ax2+bx+c=0(a0)的两根是x1、x2,那么x1+x2= ,x1x2= 。2、已知x1、x2是方程2x2+3x4=0的两个根,那么:x1+x2= ;x1x2= ; ;x21+x22= ;(x1+1)(x2+1)= ;x1x2= 。3、以2和3为根的一元二次方程(二次项系数为1)是 。4、如果关于x的一元二次方程x2+x+a=0的一个根是1,那么另一个根是 ,a的值为 。5、如果关于x的方程x2+6x+k=0的两根差为2,那么k= 。6、已知方程2x2+mx4=0两根的绝对值相等,则

2、m= 。7、一元二次方程px2+qx+r=0(p0)的两根为0和1,则qp= 。8、已知方程x2mx+2=0的两根互为相反数,则m= 。9、已知关于x的一元二次方程(a21)x2(a+1)x+1=0两根互为倒数,则a= 。10、已知关于x的一元二次方程mx24x6=0的两根为x1和x2,且x1+x2=2,则m= ,(x1+x2)= 。11、已知方程3x2+x1=0,要使方程两根的平方和为,那么常数项应改为 。12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。13、若、为实数且+3+(2)2=0,则以、为根的一元二次方程为 。(其中二次项系数为1)14、已知关于x的一元二次方程

3、x22(m1)x+m2=0。若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。15、已知方程x2+4x2m=0的一个根比另一个根小4,则= ;= ;m= 。16、已知关于x的方程x23x+k=0的两根立方和为0,则k= 17、已知关于x的方程x23mx+2(m1)=0的两根为x1、x2,且,则m= 。18、关于x的方程2x23x+m=0,当 时,方程有两个正数根;当m 时,方程有一个正根,一个负根;当m 时,方程有一个根为0。19、若方程x24x+m=0与x2x2m=0有一个根相同,则m= 。20、求作一个方程,使它的两根分别是方程x2+3x2=0两根的二倍,则所求的

4、方程为 。21、一元二次方程2x23x+1=0的两根与x23x+2=0的两根之间的关系是 。22、已知方程5x2+mx10=0的一根是5,求方程的另一根及m的值。23、已知2+是x24x+k=0的一根,求另一根和k的值。24、证明:如果有理系数方程x2+px+q=0有一个根是形如A+的无理数(A、B均为有理数),那么另一个根必是A。25、不解方程,判断下列方程根的符号,如果两根异号,试确定是正根还是负根的绝对值大?26、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:x31x2+x1x32 27、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系

5、,求下列各式的值:28、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值: (x21x22)2 29、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:x1x230、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:31、已知x1和x2是方程2x23x1=0的两个根,利用根与系数的关系,求下列各式的值:x51x22+x21x5232、求一个一元二次方程,使它的两个根是2+和2。33、已知两数的和等于6,这两数的积是4,求这两数。34、造一个方程,使它的根是方程3x27x+2=0的根;(1)大3;(2

6、)2倍;(3)相反数;(4)倒数。35、方程x2+3x+m=0中的m是什么数值时,方程的两个实数根满足:(1)一个根比另一个根大2;(2)一个根是另一个根的3倍;(3)两根差的平方是17。36、已知关于x的方程2x2(m1)x+m+1=0的两根满足关系式x1x2=1,求m的值及两个根。37、是关于x的方程4x24mx+m2+4m=0的两个实根,并且满足,求m的值。38、已知一元二次方程8x2(2m+1)x+m7=0,根据下列条件,分别求出m的值:(1)两根互为倒数;(2)两根互为相反数;(3)有一根为零;(4)有一根为1;(5)两根的平方和为。39、已知方程x2+mx+4=0和x2(m2)x1

7、6=0有一个相同的根,求m的值及这个相同的根。40、已知关于x的二次方程x22(a2)x+a25=0有实数根,且两根之积等于两根之和的2倍,求a的值。41、已知方程x2+bx+c=0有两个不相等的正实根,两根之差等于3,两根的平方和等于29,求b、c的值。42、设:3a26a11=0,3b26b11=0且ab,求a4b4的值。43、试确定使x2+(ab)x+a=0的根同时为整数的整数a的值。44、已知一元二次方程(2k3)x2+4kx+2k5=0,且4k+1是腰长为7的等腰三角形的底边长,求当k取何整数时,方程有两个整数根。45、已知:、是关于x的方程x2+(m2)x+1=0的两根,求(1+m

8、+2)(1+m+2)的值。46、已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。,47、已知x1、x2是关于x的方程x2+m2x+n=0的两个实数根;y1、y2是关于y的方程y2+5my+7=0的两个实数根,且x1y1=2,x2y2=2,求m、n的值。48、关于x的方程m2x2+(2m+3)x+1=0有两个乘积为1的实根,x2+2(a+m)x+2am2+6m4=0有大于0且小于2的根。求a的整数值。49、关于x的一元二次方程3x2(4m21)x+m(m+2)=0的两实根之和等于两个实根的倒数和,求m的值。50、已

9、知:、是关于x的二次方程:(m2)x2+2(m4)x+m4=0的两个不等实根。(1)若m为正整数时,求此方程两个实根的平方和的值;(2)若2+2=6时,求m的值。51、已知关于x的方程mx2nx+2=0两根相等,方程x24mx+3n=0的一个根是另一个根的3倍。求证:方程x2(k+n)x+(km)=0一定有实数根。52、关于x的方程=0,其中m、n分别是一个等腰三角形的腰长和底边长。(1)求证:这个方程有两个不相等的实根;(2)若方程两实根之差的绝对值是8,等腰三角形的面积是12,求这个三角形的周长。53、已知关于x的一元二次方程x2+2x+p2=0有两个实根x1和x2(x1x2),在数轴上,

10、表示x2的点在表示x1的点的右边,且相距p+1,求p的值。54、已知关于x的一元二次方程ax2+bx+c=0的两根为、,且两个关于x的方程x2+(+1)x+2=0与x2+(+1)x+2=0有唯一的公共根,求a、b、c的关系式。55、如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根、,那么(1)2+(1)2的最小值是多少?56、已知方程2x25mx+3n=0的两根之比为23,方程x22nx+8m=0的两根相等(mn0)。求证:对任意实数k,方程mx2+(n+k1)x+k+1=0恒有实数根。57、(1)方程x23x+m=0的一个根是,则另一个根是 。(2)若关于y的方程

11、y2my+n=0的两个根中只有一个根为0,那么m,n应满足 。58、不解方程,求下列各方程的两根之和与两根之积x2+3x+1=0;59、不解方程,求下列各方程的两根之和与两根之积3x22x1=0;60、不解方程,求下列各方程的两根之和与两根之积2x2+3=0;61、不解方程,求下列各方程的两根之和与两根之积2x2+5x=0。62、已知关于x的方程2x2+5x=m的一个根是2,求它的另一个根及m的值。63、已知关于x的方程3x21=tx的一个根是2,求它的另一个根及t的值。64、设x1,x2是方程3x22x2=0的两个根,利用根与系数的关系,求下列各式的值:(1)(x14)(x24);(2)x1

12、3x24+x14x23;(3);(4)x13+x23。65、设x1,x2是方程2x24x+1=0的两个根,求x1x2的值。66、已知方程x2+mx+12=0的两实根是x1和x2,方程x2mx+n=0的两实根是x1+7和x2+7, 求m和n的值。67、以2,3为根的一元二次方程是 ( ) A.x2+x+6=0 B.x2+x6=0C.x2x+6=0 D.x2x6=068、以3,1为根,且二次项系数为3的一元二次方程是 ( )A.3x22x+3=0 B.3x2+2x3=0C.3x26x9=0 D.3x2+6x9=069、两个实数根的和为2的一元二次方程可能是 ( ) A.x2+2x3=0 B.x22

13、x+3=0C.x2+2x+3=0 D.x22x3=070、以3,2为根的一元二次方程为 ,以,为根的一元二次方程为 ,以5,5为根的一元二次方程为 ,以4,为根的一元二次方程为 。71、已知两数之和为7,两数之积为12,求这两个数。72、已知方程2x23x3=0的两个根分别为a,b,利用根与系数的关系,求一个一元二次方程 ,使它的两个根分别是:(1)a+1.b+1(2)73、一个直角三角形的两条直角边长的和为6cm,面积为cm2,求这个直角三角形斜边的长 。74、在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与3;小王看错了q,解得方程的根为4与2。这个方程的根应该是什么?75、

14、关于x的方程x2ax3=0有一个根是1,则a= ,另一个根是 。76、若分式的值为0,则x的值为 ( )A.1 B.3 C.1或3 D.3或177、若关于y的一元二次方程y2+my+n=0的两个实数根互为相反数,则 ( )A.m=0且n0 B.n=0且m0C.m=0且n0 D.n=0且m078、已知x1,x2是方程2x2+3x1=0的两个根,利用根与系数的关系,求下列各式的值:(1)(2x13)(2x23);(2)x13x2+x1x23。79、已知a2=1a,b2=1b,且ab,求(a1)(b1)的值。80、如果x=1是方程2x23mx+1=0的一个根,则m= ,另一个根为 。81、已知m2+

15、m4=0,m,n为实数,且,则= 。82、两根为3和5的一元二次方程是 ( ) A.x22x15=0 B.x22x+15=0C.x2+2x15=0 D.x2+2x+15=083、.设x1,x2是方程2x22x1=0的两个根,利用根与系数的关系,求下列各式的值:(1)(x12+2)(x22+2);(2)(2x1+1)(2x2+1);(3)(x1x2)2。84、.已知m,n是一元二次方程x22x5=0的两个实数根,求2m2+3n2+2m的值。85、已知方程x2+5x7=0,不解方程,求作一个一元二次方程,使它的两个根分别是已知方 程的两个根的负倒数。86、已知关于x的一元二次方程ax2+bx+c=

16、0(a0)的两根之比为21,求证:2b2=9ac。87、.已知关于x的一元二次方程x2+mx+12=0的两根之差为11,求m的值。88、已知关于y的方程y22ay2a4=0。(1)证明:不论a取何值,这个方程总有两个不相等的 实数根;(2)a为何值时,方程的两根之差的平方等于16?89、已知一元二次方程x210x+21+a=0。(1)当a为何值时,方程有一正、一负两个根?(2)此 方程会有两个负根吗?为什么?90、已知关于x的方程x2(2a1)x+4(a1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面积。91、已知方程x2+ax+b=0的两根为x1,x2,且4x1

17、+x2=0,又知根的判别式=25,求a,b 的值。92、已知一元二次方程8y2(m+1)y+m5=0。(1)m为何值时,方程的一个根为零?(2)m为何值时 ,方程的两个根互为相反数?(3)证明:不存在实数m,使方程的两个相互为倒数。93、当m为何值时,方程3x2+2x+m8=0:(1)有两个大于2的根?(2)有一个根大于2,另一个 根小于2?94、已知2s2+4s7=0,7t24t2=0,s,t为实数,且st1。求下列各式的值:(1);;(2)。95、已知x1,x2是一元二次方程x2+x+n=0的两个实数根,且x12+x22+(x1+x2)2=3,求m和n的值。6word版本可编辑.欢迎下载支持.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(根与系数的关系练习题(DOC 6页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|