1、双曲线练习题一、选择题:1已知焦点在x轴上的双曲线的渐近线方程是y4x,则该双曲线的离心率是(A) 2中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为,则双曲线方程为(B)Ax2y2=1Bx2y2=2Cx2y2=Dx2y2=3在平面直角坐标系中,双曲线C过点P(1,1),且其两条渐近线的方程分别为2x+y=0和2xy=0,则双曲线C的标准方程为(B)A B C或 D4.已知椭圆1(ab0)与双曲线1有相同的焦点,则椭圆的离心率为( A ) ABCD5已知方程=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)A(1,3)B(1,)C(0,3)D(0
2、,)6设双曲线=1(0ab)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为(A)A2 B C D7已知双曲线的两条渐近线与以椭圆的左焦点为圆心、半径为 的圆相切,则双曲线的离心率为( A )ABCD8双曲线虚轴的一个端点为M,两个焦点为F1、F2,F1MF2120,则双曲线的离心率为(B) 9已知双曲线的一个焦点到一条渐近线的距离是2,一个顶点到它的一条渐近线的距离为,则m等于( D ) A9 B4 C2 D,310已知双曲线的两个焦点为F1(,0)、F2(,0),M是此双曲线上的一点,且满足则该双曲线的方程是(A)y21 Bx21 1 111设F
3、1,F2是双曲线x21的两个焦点,P是双曲线上的一点,且3|PF1|4|PF2|,则PF1F2的面积等于(C) A4 B8 C24 D4812过双曲线x2y28的左焦点F1有一条弦PQ在左支上,若|PQ|7,F2是双曲线的右焦点,则PF2Q的周长是(C)A28B148 C148 D813已知双曲线=1(b0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为(D)A=1B=1C=1D=114设双曲线=1(a0,b0)的左、右焦点分别为F1,F2,以F2为圆心,|F1F2|为半径的圆与双曲线在第一、二象限内依次交
4、于A,B两点,若3|F1B|=|F2A|,则该双曲线的离心率是(C)A BC D215过双曲线的右焦点作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线共有( C )条。A1 B2 C3 D416已知双曲线C:=1(a0,b0),以原点为圆心,b为半径的圆与x轴正半轴的交点恰好是右焦点与右顶点的中点,此交点到渐近线的距离为,则双曲线方程是(C)A=1 B=1 C=1D=117如图,F1、F2是双曲线=1(a0,b0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B若ABF2为等边三角形,则双曲线的离心率为(B)A4BCD18如图,已知双曲线=1(a0,b0)的左右焦点分别
5、为F1,F2,|F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是(B)A3B2CD19已知点,动圆与直线切于点,过、与圆相切的两直线相交于点,则点的轨迹方程为( B )A B C(x 0) D20.已知椭圆与双曲线有共同的焦点,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,椭圆与双曲线的离心率分别为, 则取值范围为( D )A. B. C. D. 21.已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( D )AB CD22.双曲线
6、过其左焦点F1作x轴的垂线交双曲线于A,B两点,若双曲线右顶点在以AB为直径的圆内,则双曲线离心率的取值范围为( A )A(2,+) B(1,2)C(,+) D(1,)23.已知双曲线的右焦点F,直线与其渐近线交于A,B两点,且为钝角三角形,则双曲线离心率的取值范围是( D )A. () B. (1,) C. ()D. (1,)24我们把离心率为e的双曲线1(a0,b0)称为黄金双曲线给出以下几个说法:双曲线x21是黄金双曲线;若b2ac,则该双曲线是黄金双曲线;若F1B1A290,则该双曲线是黄金双曲线;若MON90,则该双曲线是黄金双曲线其中正确的是(D)A B C D二、填空题:25如图
7、,椭圆,与双曲线,的离心率分别为e1,e2,e3,e4,其大小关系为_ _ e1e2e40,b0)的左、右焦点分别为F1(c,0)、 F2(c,0)若双曲线上存在点P,使,则该双曲线的离心率的取值范围是_ (1,1)29.已知双曲线x2=1的左、右焦点分别为F1、F2,P为双曲线右支上一点,点Q的坐标为(2,3),则|PQ|+|PF1|的最小值为7三、解答题:30已知曲线C:x21.(1) 由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足,求点P的轨迹P的轨迹可能是圆吗请说明理由;(2) 如果直线l的斜率为,且过点M(0,2),直线l交曲线C于A、B两点,又,求曲线C的方程31已知中心在原
8、点的双曲线C的右焦点为,右顶点为.()求双曲线C的方程()若直线与双曲线恒有两个不同的交点A和B且(其中为原点),求k的取值范围32.已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2.(1)求双曲线C的方程;(2)若直线l:ykx与双曲线C左支交于A、B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围33.已知椭圆C:+=1(ab0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2()求椭圆C的方程;()已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,
9、0)若存在,求出点P的横坐标;若不存在,说明理由30.已知曲线C:x21.(1)由曲线C上任一点E向x轴作垂线,垂足为F,动点P满足,求点P的轨迹P的轨迹可能是圆吗请说明理由; (2)如果直线l的斜率为,且过点M(0,2),直线l交曲线C于A、B两点,又,求曲线C的方程解:(1)设E(x0,y0),P(x,y),则F(x0,0),(xx0,y)3(xx0,yy0)代入x1中,得x21为P点的轨迹方程当时,轨迹是圆(2)由题设知直线l的方程为yx2,设A(x1,y1),B(x2,y2),联立方程组消去y得:(2)x24x40.方程组有两解,20且0,2或0,b0)由已知得:a,c2,再由a2b2
10、c2,b21,双曲线C的方程为y21.(2)设A(xA,yA)、B(xB,yB),将ykx代入y21,得:(13k2)x26kx90.由题意知解得k1.当k1时,l与双曲线左支有两个交点(3)由(2)得:xAxB,yAyB(kxA)(kxB)k(xAxB)2.AB的中点P的坐标为.设直线l0的方程为:yxm,将P点坐标代入直线l0的方程,得m.k1,213k20.m2.m的取值范围为(,2)33.已知椭圆C:+=1(ab0)的离心率为,椭圆C与y轴交于A、B两点,|AB|=2()求椭圆C的方程;()已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以M
11、N为直径的圆经过点(2,0)若存在,求出点P的横坐标;若不存在,说明理由【解答】解:()由题意可得e=,2b=2,即b=1,又a2c2=1,解得a=2,c=,即有椭圆的方程为+y2=1;()设P(m,n),可得+n2=1,即有n2=1,由题意可得A(0,1),B(0,1),设M(4,s),N(4,t),由P,A,M共线可得,kPA=kMA,即为=,可得s=1+,由P,B,N共线可得,kPB=kNB,即为=,可得s=1假设存在点P,使得以MN为直径的圆经过点Q(2,0)可得QMQN,即有=1,即st=4即有1+1=4,化为4m2=16n2(4m)2=164m2(4m)2,解得m=0或8,由P,A,B不重合,以及|m|2,可得P不存在