1、 SPSS学习感想 在这学期以前我并没有学过统计学,甚至没有接触过它,因此对它的认识可谓是从零开始的,但经过这一段的学习,也算是受益良多,下面我就简单说下感想吧。第一节课老师简单讲述了下这门课的概况,给了我们英文版和中文版教材便让我们开始分组讲授各个部分,当时只觉得毫无头绪,对于没接触过的事物人总有莫名的恐惧,这门课看似还很难,就比较担忧。但看了分到的关于方差分析部分的英文版书后,觉得老师推荐的这本书真的很好,虽然看英文比较痛苦,但胜在通俗对于我这种从未接触过的人来说也是读的懂得,这大概也是许多外国教材的优点,会有很实际的举例帮助理解,语言读起来也是简单易懂,不像许多中国教材那么晦涩。后期在看
2、英文文献的时候看到不懂得SPSS模型便会再翻出这本书来看,许多的中文版的教材也看了但总是较难迅速找到想看的知识点,且理解起来也很困难。说完对于教材的整体心得,就来说说讲课方面的心得吧,起初大家对于老师让学生讲授的方式不是很认同,觉得自己能力有限,问题太难,不一定能看得明白更勿论讲了。但经过后来自己看教材做PPT,发现其实做起来并没有看起来那么难,虽然花了不少时间但最后也算是基本了解大意及步骤,并且自己花了时间做出来的东西会特别记忆深刻,因此做完后对于方差分析这一块也算是有了整体的认识和了解,之后在看论文中这部分的模型来也轻松许多。所以这种讲课方式其实也确实能帮助同学们更积极的学习这门课程。接着
3、说说学习过后对SPSS的整体认识吧,我专门去百度了下它的全称,定义为SPSS是“社会科学统计软件包”(Statistical Package for the Social Science)的简称,是一种集成化的计算机数据处理应用软件。之前看论文的时候会经常看到各种表格图形,各种结果输出,当时并不明白,以前也没见过,因此总会跳过实验整个设计直接看结果。在学了这门课后总算对其有了初步的认识。它其实大致分为两个大部分,一是简要介绍描述性和推断性统计,包括描述性统计、推断性统计原理与推断性统计机制;二是统计分析方法,包括卡方检验、独立样本t检验、配对样本t检验、方差分析等检验差异的统计方法,和多元回归
4、分析、因子分析和结构方程模型等检验联系的统计方法。利用这些方法可以得出计算数据和统计图形,看出数据的离散程度、集中趋势和分散程度,单变量的比重,还有对数据进行标准化处理。利用这个软件对问卷数据进行分析是极好的。统计分析也主要有两大类,一类是验证差异的,另一类是验证相关性的。验证差异的主要有t检验和方差分析,验证相关性的主要有回归分析、因子分析和结构方程模型。通过课程的学习我基本知道了他们的区别和应用场景,如t检验适合两个变量之间的差异比较,而方差分析则在变量较多时使用,从而达到便捷的效果。在学习方差分析时,我刚开始常常把因变量和自变量弄混淆,在分析的时候应分别送入哪个对应框中,如果反了的话会导
5、致结果的不准确。接着,对LSD、Bonferroni、Tukey、Scheffe等方法的使用不清楚,现在基本掌握了多重比较方法选择:一般如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferroni(LSD)法;若需要进行多个均数间的两两比较,且各组个案数相等,适宜用Tukey法;其他情况宜用Scheffe法。因为经常混淆,所以这些都被我记录在PPT中,好让自己以后方便查看。还有,当时对方差齐性检验、多重比较检验的理解也存在困难,但经过小组讨论对他们也基本有了了解。当方差分析F检验否定了原假设,即认为至少有两个总体的均值存在显著性差异时,须进
6、一步确定是哪两个或哪几个均值显著地不同,则需要进行多重比较来检验。LSD即是一种多因变量的三个或三个以上水平下均值之间进行的两两比较检验,最灵敏,但会较易犯假阳性的错误。在听别的小组讲述相关分析时,对于在绘制散点图时的横坐标和纵坐标的区分刚开始不太明白,但经过同学的讲授明白了横坐标是解释变量,纵坐标是被解释变量。在学习回归分析的过程中,对解释变量向前筛选、向后筛选、逐步帅选策略不能熟练掌握,特别是对向前向后筛选时到处的结果不会进行分析。在学习因子分析的时,刚开始对提取出来的因子的实际含义不清晰,但这些问题都都一一在讲授和之后的讨论中得到了解析,从而对于他们都算是有了大致的了解。 虽然整个学习过程经历了很多困难,但小组成员在一起,大家一起克服困难,集思广益,最后的结果还算是成功的,每个人对于自己的部分都很认真在准备希望能给大家讲的清楚明晰,这个学习的过程对我们都意义非凡。现在这门课要结束了,但对于SPSS的学习却没有,现有的知识感觉只是对他有个初步的了解,离熟练运用还有些距离,论文中的模型分析的结果还不能很快的看出,因此还需要不断地看书看文献运用。但这门课显然给我们打下了很好的基础,在这结束的时刻,我希望谢谢这些陪我一起走过这个历程的人,我的老师,小组的成员以及其他组的成员们,感谢你们同我一起成长。