(完整版)《一元二次不等式及其解法》典型例题透析.doc

上传人(卖家):刘殿科 文档编号:5771867 上传时间:2023-05-07 格式:DOC 页数:9 大小:720.50KB
下载 相关 举报
(完整版)《一元二次不等式及其解法》典型例题透析.doc_第1页
第1页 / 共9页
(完整版)《一元二次不等式及其解法》典型例题透析.doc_第2页
第2页 / 共9页
(完整版)《一元二次不等式及其解法》典型例题透析.doc_第3页
第3页 / 共9页
(完整版)《一元二次不等式及其解法》典型例题透析.doc_第4页
第4页 / 共9页
(完整版)《一元二次不等式及其解法》典型例题透析.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、一元二次不等式及其解法典型例题透析类型一:解一元二次不等式例1. 解下列一元二次不等式(1); (2); (3)思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答.解析:(1)方法一:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.方法二: 或解得 或 ,即或.因而不等式的解集是.(2)方法一:因为,方程的解为.函数的简图为:所以,原不等式的解集是方法二:(当时,)所以原不等式的解集是(3)方法一:原不等式整理得.因为,方程无实数解,函数的简图为:所以不等式的解集是.所以原不等式的解集是.方法二:原不等式的解集是.总结升华:1. 初学二次不等式的解法应尽量结合二次函

2、数图象来解决,培养并提高数形结合的分析能力;2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).3. 当二次项的系数小于0时,一般都转化为大于0后,再解答.举一反三:【变式1】解下列不等式(1) ;(2) (3) ; (4) .【答案】(1)方法一:因为方程的两个实数根为:,函数的简图为:因而不等式的解集是:.方法二:原不等式等价于, 原不等式的解集是:.(2)整理,原式可化为,因为,方程的解,函数的简图为:所以不等式的解集是.(3)方法一:因为方程有两个相等的实根:,由函数的图象为:原不等式的的解集是.方法

3、二: 原不等式等价于:, 原不等式的的解集是.(4)方法一:因为,方程无实数解,由函数的简图为:原不等式的解集是.方法二:, 原不等式解集为.【变式2】解不等式:【答案】原不等式可化为不等式组 ,即,即,解得原不等式的解集为.类型二:已知一元二次不等式的解集求待定系数例2. 不等式的解集为,求关于的不等式的解集。思路点拨:由二次不等式的解集为可知:4、5是方程的二根,故由韦达定理可求出、的值,从而解得. 解析:由题意可知方程的两根为和由韦达定理有,化为,即,解得,故不等式的解集为.总结升华:二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我

4、们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键。举一反三:【变式1】不等式ax2+bx+120的解集为x|-3x2,则a=_, b=_。【答案】由不等式的解集为x|-3x2知a0对一切实数x恒成立,求实数m的取值范围。思路点拨:不等式对一切实数恒成立,即不等式的解集为R,要解决这个问题还需要讨论二次项的系数。解析:(1)当m2+4m-5=0时,m=1或m=-5若m=1,则不等式化为30, 对一切实数x成立,符合题意。若m=-5,则不等式为24x+30,不满足对一切实数x均成立,所以m=-5舍去。(2)当m2+4m-50即 m1且m-5时,由此一元二次不等式的解集

5、为R知,抛物线y=(m2+4m-5)x2-4(m-1)x+3开口向上,且与x轴无交点,所以, 即, 1m19。 综上所述,实数m的取值范围是m|1m0; (3)x2-(a+1)x+a0,即a2或a-2时,原不等式的解集为当=0,即a=2或-2时,原不等式的解集为。当0,即-2a2时,原不等式的解集为R。(3)(x-1)(x-a)1时,原不等式的解集为x|1xa 当a1时,原不等式的解集为x|ax1 当a=1时,原不等式的解集为。总结升华:对含字母的二元一次不等式,一般有这样几步:定号:对二次项系数大于零和小于零分类,确定了二次曲线的开口方向;求根:求相应方程的根。当无法判断判别式与0的关系时,

6、要引入讨论,分类求解;定解:根据根的情况写出不等式的解集;当无法判断两根的大小时,引入讨论。举一反三:【变式1】解关于x的不等式:【答案】原不等式化为a=1或a=-1时,解集为;当0a1 或a1或 -1a0时,若, 即时,;若, 即时,xR; 若, 即时,.当a0时,则有:, 。【变式2】解关于x的不等式:ax22x-10时,则0,.a0时,若a0,0, 即a-1时,xR;若a0,=0, 即a=-1时,xR且x1;若a0, 即 -1a0【答案】若a=0,原不等式化为-x+10,解集为x|x1;若a0,原不等式为关于x的一元二次不等式.方程的判别式=1-4a ()当=1-4a0,即时,方程有两个不等实数根,当时,函数的图象开口向上,与x轴有两个不同的交点,且,其简图如下:所以,此时不等式的解集为;当a0时,函数的图象开口向下,与x轴有两个不同的交点,且,其简图如下:所以,此时不等式的解集为;综上所述:a0时,原不等式解集为;a=0时,原不等式解集为;时,原不等式解集为;时,原不等式解集为;时,原不等式解集为实数集R.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文((完整版)《一元二次不等式及其解法》典型例题透析.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|