-平方根2(公开课教案)(含反思).doc

上传人(卖家):刘殿科 文档编号:5814905 上传时间:2023-05-11 格式:DOC 页数:9 大小:194KB
下载 相关 举报
-平方根2(公开课教案)(含反思).doc_第1页
第1页 / 共9页
-平方根2(公开课教案)(含反思).doc_第2页
第2页 / 共9页
-平方根2(公开课教案)(含反思).doc_第3页
第3页 / 共9页
-平方根2(公开课教案)(含反思).doc_第4页
第4页 / 共9页
-平方根2(公开课教案)(含反思).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、2.2 平方根第2课时 平方根第一环节 复习旧知 引入新知内容:方法一 复习引入1什么叫算术平方根? 3的平方等于9,那么9的算术平方根就是 3 的平方等于 ,那么 的算术平方根就是_展厅的地面为正方形,其面积49平方米,则边长_ 7_米2到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算? 平方与算术平方根之间的关系?已知折叠着的正方形ABCD面积为1,则边长为_1_将它扩展,若面积变为原来的2倍,那么它的边长为_;若面积变为原来的3倍,则边长为_;若面积变为原来的n倍,则边长为_方法二 复习引入问题 平方等于9,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问

2、题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识熟悉它们的互化关系并把上节课的思考题制作成Flash情景引入,增加动画效果效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣说明 数学知识源于生活,并服务于我们的生活这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望第二环节 : 新课学习内容 (一)探究新知填空 3=(9 ) (3)=(9 ) ( )=9 0=0()=() (不存在)=4 ()=() (二)形成概念(1)一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根而把正的平方根叫做a的算术平

3、方根表达式为:若x=a,那么x叫做a的平方根 记作 例如:(4) =16,则+4和4都是16的平方根;即16的平方根是4;4是16的算术平方根(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系(四)概念辨析平方根与算术平方根的联系与区别 联系 1包含关系 平方根包含算术平方根,算术平方根是平方根的一种 2只有非负数才有平方根和算术平方根3 0的平方根是0,算术平方根也是0区别 1个数不同:一个正数有两个平方根,但只有一个算术平方根 2表示法不同:平方根表示为 ,而算术平方根表示为目的 形成“平方根”的概念在列举一些具体数据的感性认识基础上,由平方运算反推出平方根

4、的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方对这两个概念加以比较与区别有利于学生的理解与掌握第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2);(3) 0.0004;(4);(5) 11解 (1),;(2),;(3),; (4), ;(5)目的

5、这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言(二)思考提升1 ,的算术平方根是_,的平方根是_;2 , , ,=_;3= , (三)巩固练习1 下列说法正确的是 25的平方根是5;36的平方根是6;平方根等于0的数是0;64的平方根是82下列说法不正确的是( ) (A)0的平方根是0 (B)的平方根是 (C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3已知一个自然数的算术平方根

6、是a,则该自然数的下一个自然数的算术平方根是( ) (A) a+1 (B) (C) +1 (D) 4为何值,有意义?答 因为,所以 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解 效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达第四环节 课堂小结内容 引导学生总结本课时的知识、方法目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯效果 在老师的引导下学生自己总结本节课的知识、方法,如 平方根的概念 若,则x叫a的平方根,平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根平方与开方

7、之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数第五环节 提高训练内容 1.的小数部分为a,的小数部分为b,求的值 2已知实数a,b满足若a,b为的两边,求第三边c的取值范围;若a,b为的两边,第三边c等于5,求的面积 目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题可供老师根据教学的实际情况灵活处理第六环节作业布置习题2四、教学设计反思 本节课是八年级上册第二章平方根的第二课时主要知识是平方根的学习和运用教材是教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整 (一)注重概念的形成过程

8、,让学生在概念的形成的过程中,逐步理解所学的概念概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很必要的所以在学习平方根的概念时,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的经验不符对此,在平方根的引入时,可多提一些具体的问题如“9的算术平方根是3,也就是说,3的平方是9还有其他的数,它的平方也是9吗?”等等,旨在引起学生的思考,让学生从具体的例子中抽象出初步的平方根的概念再让学生去讨论 一个正数有几个平方根?0有几个平方根?负数呢?引导学生更深刻地理解平

9、方根的概念,然后通过具体的求平方根的练习,巩固新学的概念(二)鼓励学生进行探究和交流 本节课为学生提供了有趣而富有数学含义的问题,让学生进行充分的探索和交流如 把正方形的面积不断的扩大为2倍、3倍、n倍,来引导学生充分进行交流、讨论与探索等数学活动,从中感受学习平方根的必要性(三)设计之中多处运用类比的方法,使学生清楚新旧知识的区别和联系类比概念 “平方根”和“算术平方根”的区别和联系,“平方”和“开平方”运算(四)根据学生实际,灵活使用教材教材上只安排了一道例题和几个想一想,为了让学生对新知巩固,我增加了部分练习题,围绕“平方根”这一知识点进行各种题型的变式练习当然,选题要有层次,有梯度老师

10、们在进行教学时可以根据学生的实际情况作适当的取舍(五)建议 根据知识结构的逻辑关系与学生的认知规律,建议教材在内容安排上平方根置于算术平方根之前7.3 平行线的判定第一环节:情景引入活动内容:回顾两直线平行的判定方法师:前面我们探索过直线平行的条件大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线生2:两条直线都和第三条直线平行,则这两条直线互相平行生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行师:很好这些判定方法都是我们经过观察、操作、推理、交流等活动得到的上节课我们谈到了要证实一个命题是真命题除公理、定义外,其他真命题都

11、需要通过推理的方法证实我们知道: “在同一平面内,不相交的两条直线叫做平行线”是定义“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理那其他的三个真命题如何证实呢?这节课我们就来探讨活动目的: 回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔教学效果: 由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识第二环节:探索平行线判定方法的证明活动内容: 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言所以根据题意,可以把这个文字证明题转化为下列

12、形式:如图,已知,1和2是直线a、b被直线c截出的同旁内角,且1与2互补,求证:ab 如何证明这个题呢?我们来分析分析师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明这时从图中可以知道:1与3是同位角,所以只需证明1=3,则a与b即平行因为从图中可知2与3组成一个平角,即2+3=180,所以:3=1802又因为已知条件中有2与1互补 ,即:2+1=180,所以1=1802,因此由等量代换可以知道:1=3师:好下面我们来书写推理过程,大家口述,老师来书写(在书写的同时说明:符号“”读作“因为”,“”读作“所以”)证明:1与2互补(已知) 1+2=180(互补定义) 1=1802

13、(等式的性质)3+2=180(平角定义) 3=1802(等式 的性质) 1=3(等量代换) ab(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理这一定理可简单地写 成:同旁内角互补,两直线平行注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据用来证明新定理(2)证明中的每一步推理都要有根据,不能“想当然”这些根据,可以是已知条件 ,也可以是定义、公理,已经学过的定理在初学证明时,要求把根据写在每一步推理后面的括号内 证明:内错角相等,两直线平行师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)

14、 生:我认为他的作法对他的作法可用上图来表示:CFE=45,BEF=45因为BEF与FEA组成一个平角,所以FEA=180BEF=18045=135而CFE与FEA是同旁内角且这两个角的和为180,因此可知:CDAB 师:很好从图中可知:CFE与FEB是内错角因此可知:“内错角相等,两直线平行”是真命题下面我们来用规范的语言书写这个真命题的证明过程师生分析:已知,1和2是直线a、b被直线c截出的内错角,且1=2求证:ab 证明:1=2(已知) 1+3=180(平角定义)2+3=180(等量代换) 2与3互补(互补的定义)ab(同旁内角互补,两直线平行)这样我们就又得到了直线平行的另一个判定定理

15、:内错角相等,两直线平行 借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生1:已知,如图,直线ac,bc求证:ab 证明:ac,bc(已知)1=902=90(垂直的定义)1=2(等量代换)ba(同位角相等,两直线平行)生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论师:同学们讨论得真棒下面我们通过练习来熟悉掌握直线平行的判定定理活动目的: 通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式教学效果: 由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是 将原

16、来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步第三环节:反馈练习活动内容: 课本第231页的随堂练习第一题活动目 的: 巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进教学 效果: 由于此题只是简单地运用到平行线的判定的三个定理(公理),因此, 学生都能很快完成此题第四环节:学生反思与课堂小结活动内容: 这节课我们主要探讨了平行线的判定定理的证明同学们来归纳一下完成下表: 由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角 注意:证明语言的规范化推理过程要有依据活动目的: 通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性教学效果: 学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识课后作业:课本第232页习题6.4第1,2,3题思考题:课本第233页习题6.4第4题(给学有余力的同学做)教学反思平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即 通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(-平方根2(公开课教案)(含反思).doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|