1、二次函数一、知识点梳理1.定义:一般地,如果是常数,那么叫做的二次函数.2.二次函数 的图像是对称轴平行于(包括重合)轴的抛物线.二次函数a0a0 y 0 x y 0 x (1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而增大(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而减小(4)抛物线有最高点,当x=时,y有最大值,3.用待定系数法求二次函数的解析式 (1)一般式:.已知图像上三点或三对、的值,通常选择
2、一般式. (2)顶点式:.已知图像的顶点或对称轴以及最值,通常选择顶点式. 求抛物线的顶点、对称轴的方法:, 顶点是,对称轴是直线. (3)交点式:已知图像与轴的交点坐标、,通常选用交点式: 抛物线与轴两交点之间的距离:若抛物线与轴两交点为,由于、是方程的两个根,故4.抛物线中,的作用(1) 决定开口方向及开口大小: 0,开口向上;0,开口向上, 又y=x2x+m=x2x+()2 +m=(x)2+ 对称轴是直线x=,顶点坐标为(,) (2)顶点在x轴上方, 顶点的纵坐标大于0,即0 m m时,顶点在x轴上方 (3)令x=0,则y=m 即抛物线y=x2x+m与y轴交点的坐标是A(0,m) ABx
3、轴 B点的纵坐标为m 当x2x+m=m时,解得x1=0,x2=1 A(0,m),B(1,m) 在RtBAO中,AB=1,OA=m SAOB =OAAB=4 m1=4,m=8故所求二次函数的解析式为y=x2x+8或y=x2x8【点评】正确理解并掌握二次函数中常数a,b,c的符号与函数性质及位置的关系是解答本题的关键之处 例2 已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC
4、上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标【分析】(1)解方程求出m,n的值用待定系数法求出b,c的值(2)过D作x轴的垂线交x轴于点M,可求出DMC,梯形BDBO,BOC的面积,用割补法可求出BCD的面积 (3)PH与BC的交点设为E点,则点E有两种可能:EH=EP, EH=EP 【解答】(1)解方程x26x+5=0, 得x1=5,x2=1 由mn,有m=1,n=5 所以点A,B的坐标分别为A(1,0),B(0,5)将A(1,0),B(0,5)的坐标分别代入y=x2+bx+c, 得 解这个方程组,得 所以抛物线的解析式为y=
5、x24x+5 (2)由y=x24x+5,令y=0,得x24x+5=0 解这个方程,得x1=5,x2=1 所以点C的坐标为(5,0),由顶点坐标公式计算,得点D(2,9)过D作x轴的垂线交x轴于M,如图所示 则SDMC=9(52)= S梯形MDBO=2(9+5)=14, SBDC =55= 所以SBCD =S梯形MDBO+SDMC SBOC =14+=15 (3)设P点的坐标为(a,0) 因为线段BC过B,C两点,所以BC所在的直线方程为y=x+5 那么,PH与直线BC的交点坐标为E(a,a+5),PH与抛物线y=x2+4x+5的交点坐标为H(a,a24a+5) 由题意,得EH=EP,即 (a2
6、4a+5)(a+5)=(a+5) 解这个方程,得a=或a=5(舍去) EH=EP,得 (a24a+5)(a+5)=(a+5) 解这个方程,得a=或a=5(舍去) P点的坐标为(,0)或(,0)例3 已知关于x的二次函数y=x2mx+与y=x2mx,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点(1)试判断哪个二次函数的图像经过A,B两点;(2)若A点坐标为(1,0),试求B点坐标;(3)在(2)的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x值的增大而减小? 【解答】(1)对于关于x的二次函数y=x2mx+ 由于b24ac=(m)41=m220, 所以此函数的图像与x
7、轴有两个不同的交点 故图像经过A,B两点的二次函数为y=x2mx (2)将A(1,0)代入y=x2mx 得1+m=0 整理,得m22m=0 解得m=0或m=2 当m=0时,y=x21令y=0,得x21=0 解这个方程,得x1=1,x2=1 此时,点B的坐标是B(1,0) 当m=2时,y=x22x3令y=0,得x22x3=0 解这个方程,得x1=1,x2=3 此时,点B的坐标是B(3,0) (3)当m=0时,二次函数为y=x21,此函数的图像开口向上,对称轴为x=0,所以当x0时,函数值y随x的增大而减小当m=2时,二次函数为y=x22x3=(x1)24,此函数的图像开口向上,对称轴为x=1,所
8、以当x1时,函数值y随x的增大而减小【点评】本题是一道关于二次函数与方程、不等式有关知识的综合题,但它仍然是反映函数图像上点的坐标与函数解析式间的关系,抓住问题的实质,灵活运用所学知识,这类综合题并不难解决课堂习题一、填空题1右图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图像,观察图像写出y2y1时,x的取值范围_2已知抛物线y=a2+bx+c经过点A(2,7),B(6,7),C(3,8),则该抛物线上纵坐标为8的另一点的坐标是_3已知二次函数y=x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为_4若二次函数y=x24x+c的图像与x轴只有1个交点,则c=_ 5已知
9、抛物线y=ax2+bx+c经过点(1,2)与(1,4),则a+c的值是_6甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=s2+s+如下左图所示,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为m,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是_ 7 二次函数y=x22x3与x轴两交点之间的距离为_8杭州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/m2)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8),已知点(x
10、,y)都在一个二次函数的图像上(如上右图),则6楼房子的价格为_元/m2二、选择题9二次函数y=ax2+bx+c的图像如图所示,则下列关系式不正确的是( )Aa0 Ca+b+c0 (第9题) (第12题) (第15题)10已知二次函数y=ax2+bx+c的图像过点A(1,2),B(3,2),C(5,7)若点M(2,y1),N(1,y2),K(8,y3)也在二次函数y=ax2+bx+c的图像上,则下列结论中正确的是( ) Ay1y2y3 By2y1y3 Cy3y1y2 Dy1y30)交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(1,0) (1)求抛物线的对称轴及点A的
11、坐标; (2)过点C作x轴的平行线交抛物线的对称轴于点P,你能 判断四边形ABCP是什么四边形?并证明你的结论;18如图所示,m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n) (1)求这个抛物线的解析式; (2)设(1)中抛物线与x轴的另一交点为C,抛物线 的顶点为D,试求出点C,D的坐标和BCD的面积; (3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于点H,若直线BC把 PCH分成面积之比为2:3的两部分,请求出点P的坐标19某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3m,最
12、高3.5m的厢式货车按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC20已知一个二次函数的图像过如图所示三点 (1)求抛物线的对称轴;(2) 平行于x轴的直线L的解析式为y=,抛物线与(3) x轴交于A,B两点在抛物线的对称轴上找点P,(4) 使BP的长等于直线L与x轴间的距离求点P的坐标21如图所示,二次函数y=ax2+bx+c(a0)的图像与x轴交于A,B两点,其中A点坐标为(1,0),点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点 (1)求抛物线的解析式;(2)求MCB的面积