1、第十八章 平行四边形导入新课讲授新课当堂练习课堂小结18.2.1 矩 形第2课时 矩形的判定学习目标1.经历矩形判定定理的猜想与证明过程,理解并掌握 矩形的判定定理(重点)2.能应用矩形的判定解决简单的证明题和计算题.(难点)复习引入导入新课导入新课问题1 矩形的定义是什么?有一个角是直角的平行四边形叫做矩形.问题2 矩形有哪些性质?矩形边:角:对角线:对边平行且相等四个角都是直角对角线互相平分且相等思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的任意一种就可以解决问题,这是为什么呢?这节课我们一起探讨矩形的判定吧.讲授新课讲授
2、新课对角线相等的平行四边形是矩形一类比平行四边形的定义也是判定平行四边形的一种方法,那么矩形的定义也是判定矩形的一种方法.问题1 除了定义以外,判定矩形的方法还有没有呢?矩形是特殊的平行四边形.类似地,那我们研究矩形的性质的逆命题是否成立.问题2 上节课我们已经知道“矩形的对角线相等”,反过来,小明猜想对角线相等的四边形是矩形,你觉得对吗?我猜想:对角线相等的平行四边形是矩形.不对,等腰梯形的对角线也相等.不对,矩形是特殊的平行四边形,所以它的对角线不仅相等且平分.思考 你能证明这一猜想吗?已知:如图,在ABCD中,AC,DB是它的两条对角线,AC=DB.求证:ABCD是矩形.证明:AB=DC
3、,BC=CB,AC=DB,ABCDCB,ABC=DCB.ABCD,ABC+DCB=180,ABC=90,ABCD是矩形(矩形的定义).ABCD证一证矩形的判定定理:对角线相等的平行四边形是矩形.归纳总结几何语言描述:在平行四边形ABCD中,AC=BD,平行四边形ABCD是矩形.ABCD思考 数学来源于生活,事实上工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的两条对角线长度,如果对角线长相等,则窗框一定是矩形,你现在知道为什么了吗?对角线相等的平行四边形是矩形.例1 如图,在 ABCD中,对角线AC,BD相交于点O,且OA=OD,OAD=50求OAB的度数 AB
4、CDO 解:四边形ABCD是平行四边形,OA=OC=AC,12OB=OD=BD.12又OA=OD,AC=BD,四边形ABCD是矩形,BAD=90.又OAD=50,OAB=40.典例精析例2 如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.BCDEFGHOA证明:四边形ABCD是矩形,AC=BD(矩形的对角线相等),AO=BO=CO=DO(矩形的对角线互相平分),AE=BF=CG=DH,OE=OF=OG=OH,四边形EFGH是平行四边形,EO+OG=FO+OH,即EG=FH,四边形EFGH是
5、矩形.练一练1.如图,在 ABCD中,AC和BD相交于点O,则下面条件能判定 ABCD是矩形的是 ()AAC=BD BAC=BCCAD=BC DAB=AD A2.如图 ABCD中,1=2中.此时四边形ABCD是矩形吗?为什么?ABCDO12解:四边形ABCD是矩形.理由如下:四边形ABCD是平行四边形 AO=CO,DO=BO.又 1=2,AO=BO,AC=BD,四边形ABCD是矩形.有三个角是直角的四边形是矩形二问题1 上节课我们研究了矩形的四个角,知道它们都是直角,它的逆命题是什么?成立吗?逆命题:四个角是直角的四边形是矩形.成立问题2 至少有几个角是直角的四边形是矩形?ABDC(有一个角是
6、直角)ABDC(有二个角是直角)ABDC(有三个角是直角)猜测:有三个角是直角的四边形是矩形.已知:如图,在四边形ABCD中,A=B=C=90.求证:四边形ABCD是矩形.证明:A=B=C=90,A+B=180,B+C=180,ADBC,ABCD.四边形ABCD是平行四边形,四边形ABCD是矩形.ABCD证一证矩形的判定定理:有三个角是直角的四边形是矩形.归纳总结几何语言描述:在四边形ABCD中,A=B=C=90,四边形ABCD是矩形.ABCD思考 一个木匠要制作矩形的踏板他在一个对边平行的长木板上分别沿与长边垂直的方向锯了两次,就能得到矩形踏板为什么?有三个角是直角的四边形是矩形.例3 如图
7、,ABCD的四个内角的平分线分别相交于E、F、G、H,求证:四边形 EFGH为矩形证明:在 ABCD中,ADBC,DAB+ABC=180.AE与BG分别为DAB、ABC的平分线,ABDCHEFG四边形EFGH是矩形同理可证AED=EHG=90,AFB=90,GFE=90.BAE+ABF=DAB+ABC=90.1212例4 如图,在ABC中,ABAC,ADBC,垂足为D,AN是ABC外角CAM的平分线,CEAN,垂足为E,求证:四边形ADCE为矩形证明:在ABC中,ABAC,ADBC,BADDAC,即DAC BAC.又AN是ABC外角CAM的平分线,MAECAE CAM,DAEDACCAE (B
8、ACCAM)90.又ADBC,CEAN,ADCCEA90,四边形ADCE为矩形121212练一练在判断“一个四边形门框是否为矩形”的数学活动课上,一个合作学习小组的4位同学分别拟定了如下的方案,其中正确的是 ()A测量对角线是否相等 B测量两组对边是否分别相等 C测量一组对角是否都为直角 D测量其中三个角是否都为直角 D当堂练习当堂练习1.下列各句判定矩形的说法是否正确?(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(5)有三个角是直角的四边形是矩形;(6)四个角都相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩
9、形;(4)有三个角都相等的四边形是矩形;(8)一组对角互补的平行四边形是矩形.2.如图,直线EFMN,PQ交EF、MN于A、C两点,AB、CB、CD、AD分别是EAC、MCA、ACN、CAF的平分线,则四边形ABCD是 ()A.梯形 B.平行四边形 C.矩形 D.不能确定DEFMNQPABCC3.如图,在四边形ABCD中,ABCD,BAD=90,AB=5,BC=12,AC=13求证:四边形ABCD是矩形证明:四边形ABCD中,ABCD,BAD=90,ADC=90.又ABC中,AB=5,BC=12,AC=13,满足132=52+122,即ABC是直角三角形,且B=90,四边形ABCD是矩形ABC
10、D222.ABBCAC4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ONOB,再延长OC至M,使CMAN.求证:四边形NDMB为矩形证明:四边形ABCD为平行四边形,AOOC,ODOB.ANCM,ONOB,ONOMODOB,四边形NDMB为平行四边形,MNBD,平行四边形NDMB为矩形5.如图,ABC中,ABAC,AD是BC边上的高,AE是BAC的外角平分线,DEAB交AE于点E,求证:四边形ADCE是矩形证明:ABAC,ADBC,BACB,BDDC.AE是BAC的外角平分线,FAEEAC.BACBFAEEAC,BACBFAEEAC,AECD.又DEAB,四边形A
11、EDB是平行四边形,AE平行且相等BD.又BDDC,AE平行且等于DC,故四边形ADCE是平行四边形.又ADC90,平行四边形ADCE是矩形6.如图,在梯形ABCD中,ADBC,B90,AD24cm,BC26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动(1)经过多长时间,四边形PQCD是平行四边形?解:设经过xs,四边形PQCD为平行四边形,即PDCQ,所以24x3x,解得x6.即经过6s,四边形PQCD 是平行四边形;能力提升:(2)经过多长时间
12、,四边形PQBA是矩形?解:设经过ys,四边形PQBA为矩形,即APBQ,y263y,解得y6.5,即经过6.5s,四边形PQBA是矩形课堂小结课堂小结有一个角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.有三个角是直角的四边形是矩形.运用定理进行计算和证明矩形的判定定义判定定理导入新课讲授新课当堂练习课堂小结20.2 数据的波动程度第二十章 数据的分析第2课时 根据方差做决策情境引入学习目标1.能熟练计算一组数据的方差;(重点)2.能用样本的方差估计总体的方差及根据方差做决策.(难点)导入新课导入新课方差的计算公式,请举例说明方差的意义方差的适用条件:当两组数据的平均数相等或相近时
13、,才利用方差来判断它们的波动情况2222121=-+-+-=-+-+-nsx xxxxxn()()()方差越大,数据的波动越大;方差越小,数据的波动越小复习引入讲授新课讲授新课根据方差做决策每个鸡腿的质量;鸡腿质量的稳定性抽样调查 问题1 某快餐公司的香辣鸡腿很受消费者欢迎现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿 (1)可通过哪些统计量来关注鸡腿的质量?(2)如何获取数据?例1 在问题1中,检查人员从两家的鸡腿中各随机抽取15 个,记录它们的质量(单位:g)如下表所示根据表中的数据,你认为快餐公司应该选购哪家
14、加工厂的鸡腿?解:样本数据的平均数分别是:74 7472 737515x甲+=75 7371 757515x乙+=样本平均数相同,估计这批鸡腿的平均质量相近甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 752222274 7574 7572 7573 75315s甲()()()()-+-+-+-+-+-+-=2222275 7573 7577575 75815s乙()()()()-+-+1 1-=解:样本数据的方差分别是:由可知,两家加工厂的鸡腿质量大致相等;由
15、 可知,甲加工厂的鸡腿质量更稳定,大小更均匀因此,快餐公司应该选购甲加工厂生产的鸡腿xx=甲乙2s甲2s乙例2 在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?212021191920172420171923甲乙分析:通过计算两段台阶的方差,比较波动性大小.走甲台阶的波动性更,走起来更舒适.解:201921206x甲.231917206x乙.22221220201920212063s甲.=.=222212223201920172063s乙.=.=22ss甲乙 队员平均成绩方
16、差甲9.72.12乙9.60.56丙9.80.56丁9.61.34甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲 B.乙 C.丙 D.丁C练一练议一议(1)在解决实际问题时,方差的作用是什么?反映数据的波动大小 方差越大,数据的波动越大;方差越小,数据 的波动越小,可用样本方差估计总体方差(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数 相等或相近时,再利用样本方差来估计总体数据的 波动情况例3 某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛在最近10次选
17、拔赛中,他们的成绩(单位:cm)如下:甲:585 596 610 598 612 597 604 600 613 601乙:613 618 580 574 618 593 585 590 598 624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大解:110 x=甲(585+596+610+598+612+597+604+600+613+601)=6016,s2甲65.84;110 x=乙 (613+618+580+574+618+593+585+590+598+624)=5993,s2乙284.21由上面计算结果
18、可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定但甲队员的成绩不突出,乙队员和甲队员相比比较突出(2)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛解:从平均数分析可知,甲、乙两队员都有夺冠的可能但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大 但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛做一做甲、乙两班各有8名学生参加数学竞赛,成绩如下表:甲6574708065666971乙607578
19、6180626579请比较两班学生成绩的优劣.-5+4+0+10-5-4-1+170+70 8-10+5+8-9+10-8-5+9 70+708xx甲乙解:=23=67.5 22甲乙22甲乙 s,s从平均分看两个班一样,从方差看S S,甲班的成绩比较稳定但是从高分看,80分都是1人,75分以上的甲班只有1人,而乙班有4人,占总人数的一半,可见乙班成绩优于甲班 综上可知,可见乙班成绩优于甲班当堂练习当堂练习1.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数 (单位:分)及方差s2如下表所示:如果要选出一个成绩好且状态稳定的同学参赛,
20、那么应该选择的同学是 ._x甲乙丙丁94989896 s211.211.8_x丙2.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在 五天中进球的个数统计结果如下:经过计算,甲进球的平均数为 =8,方差为 队员 每人每天进球数甲1061068乙79789x甲23.2s 甲(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?222227+9+7+8+9=857 89 87 88 89 80.85xs乙2乙解:1 乙进球的平均数为 方差为 23=3.2=0.8ssss 22乙甲2
21、2乙甲我认为应该选乙队员去参加 分球投篮大赛.因为甲乙的平均成绩一样,所以,说明乙队员进球数更稳定.3.在学校,小明本学期五次测验的数学成绩和英语成绩分别如下(单位:分)数学7095759590英语8085908585通过对小明的两科成绩进行分析,你有何看法?对小明的学习你有什么建议?解:数学、英语的平均分都是85分.数学成绩的方差为110,英语成绩的方差为10.建议:英语较稳定但要提高;数学不够稳定有待努力进步!课堂小结课堂小结根据方差做决策方差方差的作用:比较数据的稳定性利用样本方差估计总体方差导入新课讲授新课当堂练习课堂小结20.2 数据的波动程度第二十章 数据的分析第2课时 根据方差做
22、决策情境引入学习目标1.能熟练计算一组数据的方差;(重点)2.能用样本的方差估计总体的方差及根据方差做决策.(难点)导入新课导入新课方差的计算公式,请举例说明方差的意义方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况2222121=-+-+-=-+-+-nsx xxxxxn()()()方差越大,数据的波动越大;方差越小,数据的波动越小复习引入讲授新课讲授新课根据方差做决策每个鸡腿的质量;鸡腿质量的稳定性抽样调查 问题1 某快餐公司的香辣鸡腿很受消费者欢迎现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近快餐公司决定通过检查鸡腿的质量来确定
23、选购哪家的鸡腿 (1)可通过哪些统计量来关注鸡腿的质量?(2)如何获取数据?例1 在问题1中,检查人员从两家的鸡腿中各随机抽取15 个,记录它们的质量(单位:g)如下表所示根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?解:样本数据的平均数分别是:74 7472 737515x甲+=75 7371 757515x乙+=样本平均数相同,估计这批鸡腿的平均质量相近甲 74 74 75 74 76 73 76 73 76 75 78 77 74 72 73乙 75 73 79 72 76 71 73 72 78 74 77 78 80 71 752222274 7574 7572 7573
24、75315s甲()()()()-+-+-+-+-+-+-=2222275 7573 7577575 75815s乙()()()()-+-+1 1-=解:样本数据的方差分别是:由可知,两家加工厂的鸡腿质量大致相等;由 可知,甲加工厂的鸡腿质量更稳定,大小更均匀因此,快餐公司应该选购甲加工厂生产的鸡腿xx=甲乙2s甲2s乙例2 在某旅游景区上山的一条小路上,有一些断断续续高低不等的台阶.如图是其中的甲、乙两段台阶路的示意图(图中数字表示每一阶的高度,单位:cm).哪段台阶路走起来更舒服?为什么?212021191920172420171923甲乙分析:通过计算两段台阶的方差,比较波动性大小.走甲台
25、阶的波动性更,走起来更舒适.解:201921206x甲.231917206x乙.22221220201920212063s甲.=.=222212223201920172063s乙.=.=22ss甲乙 队员平均成绩方差甲9.72.12乙9.60.56丙9.80.56丁9.61.34甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()A.甲 B.乙 C.丙 D.丁C练一练议一议(1)在解决实际问题时,方差的作用是什么?反映数据的波动大小 方差越大,数据的波动越大;方差越小,数据 的波动越小,可用样本方差估计总体方差(
26、2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数 相等或相近时,再利用样本方差来估计总体数据的 波动情况例3 某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛在最近10次选拔赛中,他们的成绩(单位:cm)如下:甲:585 596 610 598 612 597 604 600 613 601乙:613 618 580 574 618 593 585 590 598 624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大解:110 x=甲(585+596+610+598+612
27、+597+604+600+613+601)=6016,s2甲65.84;110 x=乙 (613+618+580+574+618+593+585+590+598+624)=5993,s2乙284.21由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定但甲队员的成绩不突出,乙队员和甲队员相比比较突出(2)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛解:从平均数分析可知,甲、乙两队员都有夺冠的可能但由方差分析可知,甲成绩比较平稳,夺冠的可能
28、性比乙大 但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛做一做甲、乙两班各有8名学生参加数学竞赛,成绩如下表:甲6574708065666971乙6075786180626579请比较两班学生成绩的优劣.-5+4+0+10-5-4-1+170+70 8-10+5+8-9+10-8-5+9 70+708xx甲乙解:=23=67.5 22甲乙22甲乙 s,s从平均分看两个班一样,从方差看S S,甲班的成绩比较稳定但是从高分看,80分都是1人,75分以上的甲班只有1人,而乙班有4人,占总人数的一半,可见乙班成绩优于甲班 综上可知,可见乙班成绩优
29、于甲班当堂练习当堂练习1.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数 (单位:分)及方差s2如下表所示:如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是 ._x甲乙丙丁94989896 s211.211.8_x丙2.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在 五天中进球的个数统计结果如下:经过计算,甲进球的平均数为 =8,方差为 队员 每人每天进球数甲1061068乙79789x甲23.2s 甲(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出
30、一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?222227+9+7+8+9=857 89 87 88 89 80.85xs乙2乙解:1 乙进球的平均数为 方差为 23=3.2=0.8ssss 22乙甲22乙甲我认为应该选乙队员去参加 分球投篮大赛.因为甲乙的平均成绩一样,所以,说明乙队员进球数更稳定.3.在学校,小明本学期五次测验的数学成绩和英语成绩分别如下(单位:分)数学7095759590英语8085908585通过对小明的两科成绩进行分析,你有何看法?对小明的学习你有什么建议?解:数学、英语的平均分都是85分.数学成绩的方差为110,英语成绩的方差为10.建议:英语较稳定但要提高;数学不够稳定有待努力进步!课堂小结课堂小结根据方差做决策方差方差的作用:比较数据的稳定性利用样本方差估计总体方差