1、6.1 反比例函数第六章 反比例函数 当面积 S=15m2 时,长y(m)与宽x(m)的关系是:问题:小明想要在家门前草原上围一个面积约为15平米的矩形羊圈,那么羊圈的长y(单位:m)和宽x(单位:m)之间有着什么样的关系呢?xy15 xy=15或导入新课导入新课一、反比例函数的定义问题1:我们知道,导体中的电流I,与导体的电阻R、导体两端的电压之间满足关系式U=IR,当U=220V时,(1)请用含有R的代数式表示I.(2)利用写出的关系式完后下表:220.IRR/20406080100I/A115.53.662.752.2讲授新课讲授新课 当R 越来越大时,I 怎样变化?当R 越来越小呢?(
2、3)变量I 是R的函数吗?为什么?I 随着R的增大而变小,随着R 的减小而变大.问题2:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?变量t 与v之间的关系可以表示成:vt1262一般地,如果两个变量y与x的关系可以表示成的形式,那么称 y 是 x 的反比例函数.(k为常数,k0)xky 其中x是自变量,常数k(k0)称为反比例函数的反比例系数.其他表达形式kxy1 kxy概念归纳试一试下列函数是不是反比例函数?若是,请写出它的比例系数.13 xy3xyxy11113
3、 xy1xy是,k=3不是,它是正比例函数不是是,k=1是,111k解:因为菱形的面积等于两条对角线长乘积的一半,所以所以 xy=360(定值),即y与x成反比例关系所以因此,当菱形的面积一定时,它的一条对角线长y是另一条对角线长 x 的反比例函数.18021xyS.xy360例1:如图所示,已知菱形ABCD的面积为180,设它的两条对角线 AC,BD的长分别为x,y.写出变量y与x之间的函数表达式,并指出它是什么函数.ABCD典例精析二、用待定系数法求反比例函数典例精析例2:已知y是x的反比例函数,当x=-4时,y=3.(1)写出y与x之间的函数表达式;(2)当x=-2时,求y的值;(3)当
4、y=12时,求x的值.解:(1)设 当x=-4时,y=3,3=,解得k=-12.因此,y和x之间的函数表达式为y=-;,)(0kxky4kx12(2)把x=-2代入y=-,得y=-=6;(3)把y=12 代入y=-,得12=-,x=-1.x12212x12x12 (1)求反比例函数表达式时常用待定系数法,先设其表达式为y=kx(k0),然后再求出k值;(2)当反比例函数的表达式y=kx(k0)确定以后,已知x(或y)的值,将其代入表达式中即可求得相应的y(或x)的值.总结例3:已知y与x-1成反比例,当x=2时,y=4.(1)用含有x的代数式表示y;(2)当x=3时,求y的值.解:(1)设y=
5、(k0),因为当 x=2时,y=4,所以4=,解得 k=4.所以y 与 x 的函数表达式是y=;(2)当x=3时,y=2.1xk12k1xk134三、建立简单的反比例函数模型例4:近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则y与x的函数关系式为 .典例精析0100 xxy方法归纳 反比例函数模型在物理学中应用最为广泛,一定条件下,公式中的两个变量可能构成反比例关系,进而可以构建反比例函数的数学模型.列出反比例函数解析式后,注意结合实际问题写出自变量的取值范围.当堂练习当堂练习1.生活中有许多反比列函数的例子,在下面的实例中,x和y成反比例函数
6、关系的有几个?()(1)x人共饮水10kg,平均每人饮水ykg(2)底面半径为xm,高为ym的圆柱形水桶的体积为10m3(3)用铁丝做一个圆,铁丝的长为xcm,做成圆的半径为ycm(4)在水龙头前放满一桶水,出水的速度为x,放满一桶水的时间yA 1个 B 2个 C 3个 D 4个B2.小明家离学校1000 m,每天他往返于两地之间,有时步行,有时骑车假设小明每天上学时的平均速度为v(m/min),所用的时间为t(min)(1)求变量v和t之间的函数表达式;(2)星期二他步行上学用了25 min,星期三他骑自行车上学用了8 min,那么他星期三上学时的平均速度比星期二快多少呢?解:(1)(t0)(2)当t25时,;当t8时,1254085(m/min)答:小明星期三上学时的平均速度比星期二快85 m/min.tv100040251000v12581000v反比例函数建立反比例函数模型用待定系数法求反比例函数 反比例函数:(k0)kyx课堂小结课堂小结