1、-最新资料推荐- 小学数学课程标准教学建议 一、教学建议 教学活动是师生积极参与、交往互动、共同发展的过程。 数学教学应根据具体的教学内容,注意使学生在获得间接经验的同时也能够有机会获得直接经验,即从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流等,获得数学的基础知识、基本技能、基本思想、基本活动经验,促使学生主动地、富有个性地学习,不断提高发现问题和提出问题的能力、分析问题和解决问题的能力。 在数学教学活动中,教师要把基本理念转化为自己的教学行为, 处理好教师讲授与学生自主学习的关系,注重启发学生积极思考;发扬教学民主,当好学生数学活动的组织者、引导者、合
2、作者;激发学生的学习潜能,鼓励学生大胆创新与实践;创造性地使用教材,积极开发、利用各种教学资源,为学生提供丰富多彩的学习素材;关注学生的个体差异,有效地实施有差异的教学,使每个学生都得到充分的发展;合理地运用现代信息技术,有条件的地区,要尽可能合理、有效地使用计算机和有关软件,提高教学效益。 1. 数学教学活动要注重课程目标的整体实现 为使每个学生都受到良好的数学教育,数学教学不仅要使学生获得数学的知识技能,而且要把知识技能、数学思考、问题解决、情感态度四个方面目标有机结合,整体实现课程目标。 课程目标的整体实现需要日积月累。 在日常的教学活动中,教师应努力挖掘教学内容中可能蕴涵的、与上述四个
3、方面目标有关的教育价值,通过长期的教学过程,逐渐实现课程的整体目标。 因此,无论是设计、实施课堂教学方案,还是组织各类教学活动,不仅要重视学生获得知识技能,而且要激发学生的学习兴趣,通过独立思考或者合作交流感悟数学的基本思想,引导学生在参与数学活动的过程中积累基本经验,帮助学生形成认真勤奋、独立思考、合作交流、反思质疑等良好的学习习惯。 例如,关于零指数教学方案的设计可作如下考虑: 教学目标不仅要包括了解零指数幂的规定、会进行简单计算,还要包括感受这个规定的合理性,并在这个过程中学会数学思考、感悟理性精神 2. 重视学生在学习活动中的主体地位 有效的数学教学活动是教师教与学生学的统一,应体现以
4、人为本的理念,促进学生的全面发展。 (1)学生是数学学习的主体,在积极参与学习活动的过程中不断得到发展。 学生获得知识,必须建立在自己思考的基础上,可以通过接受学习的方式,也可以通过自主探索等方式;学生应用知识并逐步形成技能,离不开自己的实践;学生在获得知识技能的过程中,只有亲身参与教师精心设计的教学活动,才能在数学思考、问题解决和情感态度方面得到发展(参见例 82)。 (2)教师应成为学生学习活动的组织者、引导者、合作者,为学生的发展提供良好的环境和条件。 教师的组织作用主要体现在两个方面: 第一,教师应当准确把握教学内容的数学实质和学生的实际情况,确定合理的教学目标,设计一个好的教学方案;
5、第二,在教学活动中,教师要选择适当的教学方式,因势利导、适时调控、努力营造师生互动、生生互动、生动活泼的课堂氛围,形成有效的学习活动。 教师的引导作用主要体现在: 通过恰当的问题,或者准确、清晰、富有启发性的讲授,引导学生积极思考、求知求真,激发学生的好奇心;通过恰当的归纳和示范,使学生理解知识、掌握技能、积累经验、感悟思想;能关注学生的差异,用不同层次的问题或教学手段,引导每一个学生都能积极参与学习活动,提高教学活动的针对性和有效性。 教师与学生的合作主要体现在: 教师以平等、尊重的态度鼓励学生积极参与教学活动,启发学生共同探索,与学生一起感受成功和挫折、分享发现和成果。 (3)处理好学生主
6、体地位和教师主导作用的关系。 好的教学活动,应是学生主体地位和教师主导作用的和谐统一。 一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展(参见例 32,例 52)。 实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。 教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。 3. 注重学生对基础知识、基本技能的理解和掌握 知识技能既是学生发展的基础性目标,又是落实数
7、学思考问题解决情感态度目标的载体。 (1)数学知识的教学,应注重学生对所学知识的理解,体会数学知识之间的关联。 学生掌握数学知识,不能依赖死记硬背,而应以理解为基础,并在知识的应用中不断巩固和深化。 为了帮助学生真正理解数学知识,教师应注重数学知识与学生生活经验的联系、与学生学科知识的联系,组织学生开展实验、操作、尝试等活动,引导学生进行观察、分析,抽象概括,运用知识进行判断。 教师还应揭示知识的数学实质及其体现的数学思想,帮助学生理清相关知识之间的区别和联系等。 数学知识的教学,要注重知识的生长点与延伸点,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系,处理好局部知识与整体知识
8、的关系,引导学生感受数学的整体性,体会对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。 (2)在基本技能的教学中,不仅要使学生掌握技能操作的程序和步骤,还要使学生理解程序和步骤的道理。 例如,对于整数乘法计算,学生不仅要掌握如何进行计算,而且要知道相应的算理;对于尺规作图,学生不仅要知道作图的步骤,而且要能知道实施这些步骤的理由。 基本技能的形成,需要一定量的训练,但要适度,不能依赖机械的重复操作,要注重训练的实效性。 教师应把握技能形成的阶段性,根据内容的要求和学生的实际,分层次地落实。 4. 感悟数学思想,积累数学活动经验 数学思想蕴涵在数学知识形成、发展和应用的过程中,是
9、数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。 学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。 例如,分类是一种重要的数学思想。 学习数学的过程中经常会遇到分类问题,如数的分类,图形的分类,代数式的分类,函数的分类等。 在研究数学问题中,常常需要通过分类讨论解决问题,分类的过程就是对事物共性的抽象过程。 教学活动中,要使学生逐步体会为什么要分类,如何分类,如何确定分类的标准,在分类的过程中如何认识对象的性质,如何区别不同对象的不同性质。 通过多次反复的思考和长时间的积累,使学生逐步感悟分类是一种重要的思想。 学会分类,可以有助于学习新的数
10、学知识,有助于分析和解决新的数学问题。 数学活动经验的积累是提高学生数学素养的重要标志。 帮助学生积累数学活动经验是数学教学的重要目标,是学生不断经历、体验各种数学活动过程的结果。 数学活动经验需要在做的过程和思考的过程中积淀,是在数学学习活动过程中逐步积累的。 教学中注重结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,是学生积累数学活动经验的重要途径。 例如,在统计教学中,设计有效的统计活动,使学生经历完整的统计过程,包括收集数据、整理数据、展示数据、从数据中提取信息,并利用这些信息说明问题。 学生在这样的过程中,不断积累统计活动经验,加深理解统计思想与方法。 综合
11、与实践是积累数学活动经验的重要载体。 在经历具体的综合与实践问题的过程中,引导学生体验如何发现问题,如何选择适合自己完成的问题,如何把实际问题变成数学问题,如何设计解决问题的方案,如何选择合作的伙伴,如何有效地呈现实践的成果,让别人体会自己成果的价值。 通过这样的教学活动,学生会逐步积累运用数学解决问题的经验。 5. 关注学生情感态度的发展 根据课程目标,广大教师要把落实情感态度的目标作为己任,努力把情感态度目标有机地融合在数学教学过程之中。 设计教学方案、进行课堂教学活动时,应当经常考虑如下问题: 如何引导学生积极参与教学过程? 如何组织学生探索,鼓励学生创新? 如何引导学生感受数学的价值?
12、 如何使他们愿意学,喜欢学,对数学感兴趣? 如何让学生体验成功的喜悦,从而增强自信心? 如何引导学生善于与同伴合作交流,既能理解、尊重他人的意见,又能独立思考、大胆质疑? 如何让学生做自己能做的事,并对自己做的事情负责? 如何帮助学生锻炼克服困难的意志? 如何培养学生良好的学习习惯? 在教育教学活动中,教师要尊重学生,以强烈的责任心,严谨的治学态度,健全的人格感染和影响学生;要不断提高自身的数学素养,善于挖掘教学内容的教育价值;要在教学实践中善于用本标准的理念分析各种现象,恰当地进行养成教育。 6. 合理把握综合与实践的实施 综合与实践的实施是以问题为载体、以学生自主参与为主的学习活动。 它有
13、别于学习具体知识的探索活动,更有别于课堂上教师的直接讲授。 它是教师通过问题引领、学生全程参与、实践过程相对完整的学习活动。 积累数学活动经验、培养学生应用意识和创新意识是数学课程的重要目标,应贯穿整个数学课程之中。 综合与实践是实现这些目标的重要和有效的载体。 综合与实践的教学,重在实践、重在综合。 重在实践是指在活动中,注重学生自主参与、全过程参与,重视学生积极动脑、动手、动口。 重在综合是指在活动中,注重数学与生活实际、数学与其他学科、数学内部知识的联系和综合应用。 教师在教学设计和实施时应特别关注的几个环节是: 问题的选择,问题的展开过程,学生参与的方式,学生的合作交流,活动过程和结果
14、的展示与评价等。 要使学生能充分、自主地参与综合与实践活动,选择恰当的问题是关键。 这些问题既可来自教材,也可以由教师、学生开发。 提倡教师研制、开发、生成出更多适合本地学生特点的、有利于实现综合与实践课程目标的好问题。 实施综合与实践时,教师要放手让学生参与,启发和引导学生进入角色,组织好学生之间的合作交流,并照顾到所有的学生。 教师不仅要关注结果,更要关注过程,不要急于求成,要鼓励引导学生充分利用综合与实践的过程,积累活动经验、展现思考过程、交流收获体会、激发创造潜能。 在实施过程中,教师要注意观察、积累、分析、反思,使综合与实践的实施成为提高教师自身和学生素质的互动过程。 教师应该根据不
15、同学段学生的年龄特征和认知水平,根据学段目标,合理设计并组织实施综合与实践活动。 7. 教学中应当注意的几个关系 (1)预设与生成的关系 教学方案是教师对教学过程的预设,教学方案的形成依赖于教师对教材的理解、钻研和再创造。 理解和钻研教材,应以本标准为依据,把握好教材的编写意图和教学内容的教育价值;对教材的再创造,集中表现在: 能根据所教班级学生的实际情况,选择贴切的教学素材和教学流程,准确地体现基本理念和内容标准规定的要求。 实施教学方案,是把预设转化为实际的教学活动。 在这个过程中,师生双方的互动往往会生成一些新的教学资源,这就需要教师能够及时把握,因势利导,适时调整预案,使教学活动收到更
16、好的效果。 (2)面向全体学生与关注学生个体差异的关系 教学活动应努力使全体学生达到课程目标的基本要求,同时要关注学生的个体差异,促进每个学生在原有基础上的发展。 对于学习有困难的学生,教师要给予及时的关注与帮助,鼓励他们主动参与数学学习活动,并尝试用自己的方式解决问题、发表自己的看法,要及时地肯定他们的点滴进步,耐心地引导他们分析产生困难或错误的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。 对于学有余力并对数学有兴趣的学生,教师要为他们提供足够的材料和思维空间,指导他们阅读,发展他们的数学才能。 在教学活动中,要鼓励与提倡解决问题策略的多样化,恰当评价学生在解决问题过程中所表现
17、出的不同水平;问题情境的设计、教学过程的展开、练习的安排等要尽可能地让所有学生都能主动参与,提出各自解决问题的策略,并引导学生通过与他人的交流选择合适的策略,丰富数学活动的经验,提高思维水平。 (3)合情推理与演绎推理的关系 推理贯穿于数学教学的始终,推理能力的形成和提高需要一个长期的、循序渐进的过程。 义务教育阶段要注重学生思考的条理性,不要过分强调推理的形式。 推理包括合情推理和演绎推理。 教师在教学过程中,应该设计适当的学习活动,引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;通过实例使学生逐步意识到,结论的正确性需要演绎推理的确认,可以
18、根据学生的年龄特征提出不同程度的要求。 在第三学段中,应把证明作为探索活动的自然延续和必要发展,使学生知道合情推理与演绎推理是相辅相成的两种推理形式。 证明的教学应关注学生对证明必要性的感受,对证明基本方法的掌握和证明过程的体验。 证明命题时,应要求证明过程及其表述符合逻辑,清晰而有条理(参见例 63)。 此外,还可以恰当地引导学生探索证明同一命题的不同思路和方法,进行比较和讨论,激发学生对数学证明的兴趣,发展学生思维的广阔性和灵活性。 (4)使用现代信息技术与教学手段多样化的关系积极开发和有效利用各种课程资源,合理地应用现代信息技术,注重信息技术与课程内容的整合,能有效地改变教学方式,提高课
19、堂教学的效益。 有条件的地区,教学中要尽可能地使用计算器、计算机以及有关软件;暂时没有这种条件的地区,一方面要积极创造条件改善教学设施,另一方面广大教师应努力自制教具以弥补教学设施的不足。 在学生理解并能正确应用公式、法则进行计算的基础上,鼓励学生用计算器完成较为繁杂的计算。 课堂教学、课外作业、实践活动中,应当根据内容标准的要求,允许学生使用计算器,还应当鼓励学生用计算器进行探索规律等活动(参见例28,例 51)。 现代信息技术的作用不能完全替代原有的教学手段,其真正价值在于实现原有的教学手段难以达到甚至达不到的效果。 例如,利用计算机展示函数图像、几何图形的运动变化过程;从数据库中获得数据,绘制合适的统计图表;利用计算机的随机模拟结果,引导学生更好地理解随机事件以及随机事件发生的概率;等等。 在应用现代信息技术的同时,教师还应注重课堂教学的板书设计。 必要的板书有利于实现学生的思维与教学过程同步,有助于学生更好地把握教学内容的脉络。 16 / 16