1、数与形数与形,本是相倚依本是相倚依焉能分作两边飞焉能分作两边飞数无形时少直觉数无形时少直觉形少数时难入微形少数时难入微数形结合百般好数形结合百般好隔离分家万事休隔离分家万事休切莫忘切莫忘,几何代数统一体几何代数统一体永远联系莫分离永远联系莫分离 华罗庚华罗庚02030 30 40 40 505061 3.518.3赛季赛季得得分分22.31 7.58.2902030 30 40 40 50506赛季赛季篮板篮板10.28.4赛季赛季02-0303-0404-0505-06得分得分13.517.518.322.3篮板篮板8.298.410.2姚 明 数姚 明 数据 统 计据 统 计表表()yf
2、x()yg xx yOx yOababnm能用图象上动点能用图象上动点P(x,y)的横、纵坐标)的横、纵坐标关系来说明上升关系来说明上升或下降或下降趋势吗趋势吗?xyo1yxxyo1yx xyo2yx 在某一区间内,在某一区间内,当当x的值增大时的值增大时,函数值函数值y也增大也增大图像在该区间内逐渐上升;图像在该区间内逐渐上升;当当x的值增大时的值增大时,函数值函数值y反而减小反而减小图像在该区间内逐渐下降。图像在该区间内逐渐下降。函数的这种性质称为函数的单调性函数的单调性局部上升或下降局部上升或下降下降下降上升上升Oxy1x)x(f12xyOxy1x)x(f12xyOxy1x)x(f12x
3、yOxy1x)x(f12xyOxy1x)x(f12xyOxy1x)x(f12xyOxy1x)x(f12xyOxy1x)x(f12xyOx)x(f11xy2xy y246810O-2x84121620246210141822I对区间对区间I内内 x1,x2,当当x1x2时,时,有有f(x1)f(x2)图象在图象在区间区间I逐渐上升逐渐上升?OxIy区间区间I内内随着随着x的增大,的增大,y也增大也增大x1x2f(x1)f(x2)MN对区间对区间I内内 x1,x2,当当x1x2时,时,有有f(x1)f(x2)xx1x2?Iyf(x1)f(x2)OMN任意任意区间区间I内内随着随着x的增大,的增大,
4、y也增大也增大图象在图象在区间区间I逐渐上升逐渐上升对区间对区间I内内 x1,x2,当当x1x2时,时,有有f(x1)f(x2)xx1x2都都yf(x1)f(x2)O设函数设函数y=f(x)的定义域为的定义域为A,区间区间I A.如果对于如果对于区间区间I上的上的任意任意当当x1x2时,时,都有都有f(x1)f(x2),定义定义MN任意任意两个自变量的值两个自变量的值x1,x2,I 称为称为 f(x)的的单调单调增区间增区间.那么就说那么就说 f(x)在区间在区间I上上是单调是单调增函数增函数,区间区间I内内随着随着x的增大,的增大,y也增大也增大图象在图象在区间区间I逐渐上升逐渐上升I 那么
5、就说在那么就说在f(x)这个区间上是单调这个区间上是单调减减函数函数,I称为称为f(x)的的单调单调 减减 区间区间.Oxyx1x2f(x1)f(x2)类比单调增函数的研究方法定义单调减函数类比单调增函数的研究方法定义单调减函数.xOyx1x2f(x1)f(x2)设函数设函数y=f(x)的定义域为的定义域为A,区间区间I A.如果对于属于定义域如果对于属于定义域A内内某个区间某个区间I上上的的任意任意两个自变量的值两个自变量的值x1,x2,设函数设函数y=f(x)的定义域为的定义域为A,区间区间I A.如果对于属于定义域如果对于属于定义域A内内某个区间某个区间I上上的的任意任意两个自变量的值两
6、个自变量的值x1,x2,那么就说在那么就说在f(x)这个区间上是单调这个区间上是单调增增 函数函数,I称为称为f(x)的的单调单调 区间区间.增增当当x1x2时,时,都有都有f(x1)f(x2),当当x1x2时,时,都有都有 f(x1)f(x2),单调区间单调区间(2 2)函数单调性是针对某个)函数单调性是针对某个区间区间而言的,是一个局部性质而言的,是一个局部性质;(1 1)如果函数)如果函数 y=f(x)在区间在区间I I是单调增函数或单调减函数,那么是单调增函数或单调减函数,那么就说函数就说函数 y=f(x)在区间在区间I I上具有单调性。上具有单调性。在单调区间上,在单调区间上,增函数
7、的图象是增函数的图象是上升上升的,减函数的图象是的,减函数的图象是下降下降的。的。判断判断1 1:函数函数 f(x)=x2 在在 是单调增函数是单调增函数;,xyo2yx(2 2)函数单调性是针对某个)函数单调性是针对某个区间区间而言的,是一个局部性质而言的,是一个局部性质;(1 1)如果函数)如果函数 y=f(x)在区间在区间I I是单调增函数或单调减函数,那么是单调增函数或单调减函数,那么就说函数就说函数 y=f(x)在区间在区间I I上具有单调性。上具有单调性。在单调区间上,在单调区间上,增函数的图象是增函数的图象是上升上升的,减函数的图象是的,减函数的图象是下降下降的。的。判断判断2
8、2:定义在:定义在R上的函数上的函数 f(x)满足满足 f(2)(2)f(1)(1),则函数则函数 f(x)在在R上是增函数;上是增函数;(3 3)x 1,x 2 取值的取值的任意任意性性yxO12f(1)f(2)例例2.画出下列函数图像,并写出单调区间:画出下列函数图像,并写出单调区间:1(1)(0);yxxx1yxy1yx的单调减区间是_(,0)(0,),讨论讨论1:根据函数单调性的定义,根据函数单调性的定义,1(0)(,0)(0,)yxx能不能说在定义域上是单调减函数?2试讨论试讨论 在在 和上的单调性和上的单调性?()(0)kf xkx0,0?变式变式2:讨论:讨论 的单调性的单调性2
9、(0)yaxbxc a成果交流成果交流变式变式1:讨论:讨论 的单调性的单调性2(0)yaxa2(2)2.yx xyy=-x2+21-1122-1-2-22yx+2的单调增区间是_;(,02yx+2的单调减区间是_.0,)例例2.画出下列函数图像,并写出单调区间:画出下列函数图像,并写出单调区间:例例3.3.判断函数判断函数 在定义域在定义域 上的单调性上的单调性.1yxx0,描点作图描点作图1.任取任取x1,x2D,且,且x10 a02yaxbxc,2ba,2ba 2(0)yaxbxc a的对称轴为2bxa 返回,2ba,2ba证明:在区间证明:在区间 上任取两个值上任取两个值 且且 1,1
10、2,x x12xx则则12121211()()()()f xf xxxxx121211()()xxxx211212()()xxxxxx1212121()()xxxxxx12,1,x x,且,且12xx12120,10 xxx x 1212()()0,()()f xf xf xf x所以函数所以函数 在区间上在区间上 是增函数是增函数.1yxx1,取值取值作差作差变变形形定号定号结论结论返回返回()f x 是定义在是定义在R上的单调函数,且上的单调函数,且 的图的图象过点象过点A(0,2)和)和B(3,0)(1)解方程)解方程(2)解不等式)解不等式(3)求适合)求适合 的的 的的取值范围取值范
11、围()f x()(1)f xfx(2)(1)fxfx()2()0f xf x或x成果运用成果运用,12()4f xxax 若若二次函数二次函数 的单调增区是的单调增区是 ,则则a的取值情况是的取值情况是 ()变式变式1变式变式2请你说出一个单调减区间是请你说出一个单调减区间是 的二次函数的二次函数,1 变式变式3请你说出一个在请你说出一个在 上单调递减的函数上单调递减的函数,1,12()4f xxax 若若二次函数二次函数 在区间在区间 上单调递上单调递增,求增,求a的取值范围。的取值范围。2222aaaa A.B.C.D.()21A yx 2()31B yx 2()Cyx2()21D yxx1010 xxxx _成果运用成果运用,12()4f xxax 若若二次函数二次函数 在区间在区间 上单调递上单调递增,求增,求a的取值范围。的取值范围。解:解:二次函数二次函数 的对称轴为的对称轴为 ,由图象可知只要由图象可知只要 ,即,即 即可即可.2()4f xxax 2ax 12ax 2a oxy1xy1o