1、用列举法、列表法、树状图法用列举法、列表法、树状图法求概率求概率1ppt课件1、有、有100张卡片(从张卡片(从1号到号到100号),从中任取号),从中任取1张,取到的卡号是张,取到的卡号是7的倍数的概率为()。的倍数的概率为()。2、某组、某组16名学生,其中男女生各一半,把全名学生,其中男女生各一半,把全组学生分成人数相等的两个小组,则分得每组学生分成人数相等的两个小组,则分得每小组里男、女人数相同的概率是()小组里男、女人数相同的概率是()3.一个口袋内装有大小相等的一个口袋内装有大小相等的1个白球和已编个白球和已编有不同号码的有不同号码的3个黑球,从中摸出个黑球,从中摸出2个球个球.(
2、1)共有多少种不同的结果?)共有多少种不同的结果?(2)摸出)摸出2个黑球有多种不同的结果?个黑球有多种不同的结果?(3)摸出两个黑球的概率是多少?)摸出两个黑球的概率是多少?复习与练习复习与练习2ppt课件例例1.掷两枚硬币掷两枚硬币,求下列事件的概率求下列事件的概率:(1)两枚硬币全部反面朝上两枚硬币全部反面朝上;(2)一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上.解解:其中一枚硬币为其中一枚硬币为A,另一枚硬币为另一枚硬币为B,则所有可能结果如表所示则所有可能结果如表所示:正反正(正,正)(正,反)反(反,正)(反,反)AB总共总共4种结果种结果,每种结果出现的可能
3、性相同每种结果出现的可能性相同.(1)所有结果中所有结果中,满足两枚硬币全部反面朝上的结果只满足两枚硬币全部反面朝上的结果只有一个有一个,即即”(反反,反反)”,所以所以P(两枚硬币全部反面朝上两枚硬币全部反面朝上)=41(2)所有结果中所有结果中,满足一枚硬币正面朝上满足一枚硬币正面朝上,一枚硬币反一枚硬币反面朝上的结果有面朝上的结果有2个个,即即”(正正,反反),(反反,正正)”,所以所以P(一枚硬币正面朝上一枚硬币正面朝上,一枚硬币反面朝上一枚硬币反面朝上)=21423ppt课件4ppt课件6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34
4、,24,13,63,53,43,33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个5ppt课件61366)(AP91364)(BP3611)(CP6ppt课件7ppt课件8ppt课件123456123456w用表格表示用表格表示(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
5、(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)9ppt课件当一次试验要涉及两个因素当一次试验要涉及两个因素,并且可能出并且可能出现的结果数目较多时现的结果数目较多时,为了不重不漏的列为了不重不漏的列出所有可能的结果出所有可能的
6、结果,通常采用通常采用解解:由表中可以看出由表中可以看出,在两堆牌中分别取一张在两堆牌中分别取一张,它可它可 能出现的结果有能出现的结果有36个个,它们出现的可能性相等它们出现的可能性相等 满足两张牌的数字之积为奇数满足两张牌的数字之积为奇数(的有的有(1,1)(1,3)(1,5)(3,1)(3,3)(3,5)(5,1)(5,3)(5,5)这这9种情况种情况,所以所以 P(A)=4136910ppt课件 随堂练习随堂练习(基础练习)(基础练习)419111ppt课件6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34,24,13,63,53,43,
7、33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个1873614)(AP12ppt课件甲口袋中装有甲口袋中装有2个相同的小球个相同的小球,它们分它们分别写有字母别写有字母A和和B;乙口袋中装有乙口袋中装有3个相个相同的小球同的小球,它们分别写有字母它们分别写有字母C.D和和E;丙口袋中装有丙口袋中装有2个相同的小球个相同的小球,它们分它们分别写有字母别写有字母H和和I,从从3个口袋中各随机个口袋中各随机地取出地取出1个小球个小球.例例3:3:13ppt课件(2)取出的取出的3个小球上全是辅音字母个小球上全是辅音字母的概率是
8、多少的概率是多少?ADCIHEB(1)取出的取出的3个小球上个小球上,恰好有恰好有1个个,2个个和和3个元音字母的概率分别是多少个元音字母的概率分别是多少?14ppt课件AB甲甲乙乙丙丙EDCEDCIHIHIHIHIHIH解解:根据题意根据题意,我们可以画出如下的树形图我们可以画出如下的树形图(1)只有一个元音字母只有一个元音字母(记为事件记为事件A)的结果有的结果有5个个,所以所以 P(A)=125共有共有12种等可能的结果种等可能的结果15ppt课件 A A A A A A B B B B B B C C D D E E C C D D E E H I H I H I H I H I H
9、I(1)只有一个元音字母只有一个元音字母(记为事件记为事件A)的结果有的结果有5个个,所以所以 P(A)=根据树形图根据树形图,可以看出可以看出,所有可能出现的结果是所有可能出现的结果是12个个,这些结果出现的可能性相等这些结果出现的可能性相等,A A A A A A B B B B B B C C D D E E C C D D E E H I H I H I H I H I H I 有两个元音字母有两个元音字母(记为事件记为事件B)的结果有的结果有4个个,所以所以 P(B)=有三个元音字母有三个元音字母(记为事件记为事件C)的结果有的结果有1个个,所以所以 P(C)=(2)全是辅音字母全是
10、辅音字母(记为事件记为事件D)的结果有的结果有2个个,所以所以 P(D)=124311211226116ppt课件思考?什么时候用思考?什么时候用“列表法列表法”方便,什么时方便,什么时候用候用“树形图树形图”方便?方便?ACDEHI HI HIBCDEHI HI HIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4
11、)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第一个第二个当一次试验涉及当一次试验涉及两个因素两个因素时,且可能时,且可能出现的结果较多时,为不重复不遗漏地出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列出所有可能的结果,通常用列表法列表法当一次试验涉及当一次试验涉及3个因素或个因素或3个以上个以上的因素的因素时,列表法就不方便了,为不时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,重复不遗漏地列出所有可能的结果,通常用通常用树形图树形图17ppt课件2.2.小明是个小马虎小明是个小马虎,晚
12、上睡觉时将晚上睡觉时将两双不同的袜子放在床头,早上两双不同的袜子放在床头,早上起床没看清随便穿了两只就去上起床没看清随便穿了两只就去上学,问小明正好穿的是相同的一学,问小明正好穿的是相同的一双袜子的概率是多少?双袜子的概率是多少?18ppt课件解:设两双袜子分别为解:设两双袜子分别为A1、A2、B1、B2,则则B1A1B2A2开始开始A2 B1 B2A1 B1 B2A1 A1 B2A1 A2 B1所以穿相同一双袜子的概率为所以穿相同一双袜子的概率为31124 练习练习19ppt课件4.经过某十字路口的汽车经过某十字路口的汽车,它可能继续直行它可能继续直行,也可能向左转或向右转也可能向左转或向右
13、转,如果这三种可能如果这三种可能性大小相同性大小相同,当有三辆汽车经过这个十字当有三辆汽车经过这个十字路口时路口时,求下列事件的概率求下列事件的概率(1)三辆车全部继续直行三辆车全部继续直行;(2)两辆车向右转两辆车向右转,一辆车向左转一辆车向左转;(3)至少有两辆车向左转至少有两辆车向左转20ppt课件第一辆左右左右左直右左直右第二辆第三辆直直左右直左右直左直右左直右左直左直右右左直右左直右左左直直右右左直右左直右左直左直右右左直右左直右左左直右直右共有共有27种行驶方向种行驶方向解:画树形图如下:271()1(全部继续直行)P21ppt课件91273()2(两车右转,一车左传)P(3)至少
14、有两辆车向左传,有7种情况,即:左左左,左左直,左左右,左直左,左右左,直左左,右左左。277(至少有两车向左传)P22ppt课件课堂总结课堂总结:用列表法和树形图法求概率时应注意什用列表法和树形图法求概率时应注意什么情况?么情况?w利用利用树形图树形图或或表格表格可以清晰地表示可以清晰地表示出某个事件发生的所有可能出现的出某个事件发生的所有可能出现的结果结果;从而较方便地求出某些事件从而较方便地求出某些事件发生的发生的概率概率.当试验包含当试验包含两步时两步时,列列表法表法比较方便比较方便,当然当然,此时也可以用此时也可以用树形图法树形图法,当试验在当试验在三步或三步以三步或三步以上上时时,
15、用树形图法方便用树形图法方便.23ppt课件要要“玩玩”出水平出水平“配配紫色紫色”游戏游戏红白黄蓝绿A盘B盘24ppt课件“配配紫色紫色”游戏游戏黄蓝绿红(红,黄)(红,蓝)(红,绿)白(白,黄)(白,蓝)(白,绿)25ppt课件如图是配紫游戏中的两个转盘,你能用列表的方法求出配成紫色的概率是多少?A盘红B盘蓝B盘红A盘蓝3141312141611212131413126ppt课件行家看行家看“门道门道”游戏规则是游戏规则是:如果所摸球上的数字与转盘转出的数字之和为如果所摸球上的数字与转盘转出的数字之和为2,2,那么游戏者获胜那么游戏者获胜.求游戏者获胜的概率求游戏者获胜的概率.用心领用心领“悟悟”12327ppt课件解解:每次游戏时每次游戏时,所有可能出现的结果如下所有可能出现的结果如下:转盘摸球112(1,1)(1,2)2(2,1)(2,2)3(1,3)(2,3)共有共有6种等可能结果,其中和为种等可能结果,其中和为2的有的有1种种28ppt课件