1、一次函数基础测试题及答案一、选择题1如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系以下结论正确的是( )A甲的速度为20km/hB甲和乙同时出发C甲出发1.4h时与乙相遇D乙出发3.5h时到达A地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地【详解】解:A甲的速度为:602=30,故A错误; B根据图象即可得出甲比乙早出发0.5小时,故B错误; C设对应的函
2、数解析式为,所以:, 解得即对应的函数解析式为; 设对应的函数解析式为,所以:, 解得 即对应的函数解析式为,所以:, 解得 点A的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D根据图形即可得出乙出发3h时到达A地,故D错误 故选:C【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答2给出下列函数:y3x+2:y;y:y3x,上述函数中符合条件“当x1时,函数值y随自变量x增大而增大”的是()ABCD【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案【详解】解:y3
3、x+2,当x1时,函数值y随自变量x增大而减小,故此选项不符合题意;y,当x1时,函数值y随自变量x增大而减小,故此选项不符合题意;y,当x1时,函数值y随自变量x增大而增大,故此选项符合题意;y3x,当x1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键3一次函数是(是常数,)的图像如图所示,则不等式的解集是( )ABCD【答案】C【解析】【分析】根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k0)的图象与x轴的交点是(2,0),得到当x2时,y0,即可得到答案【详解】解:一次函数y=kx+
4、b(k,b是常数,k0)的图象与x轴的交点是(2,0),当x2时,y0故答案为:x2故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键4平面直角坐标系中,点、,当时,的取值范围为( )ABCD或【答案】D【解析】【分析】根据点B的坐标特征得到点B在直线y=-x+2上,由于直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作P,如图,易得AQO=45,P与直线y=-x+2只有一个交点,根据圆外角的性质得到点B在直线y=-x+2上(除Q点外),有ABO小于45,所以b0或b2【详解】解B点坐标为(
5、b,-b+2),点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作P,如图,A(2,0),AQO=45,点B在直线y=-x+2上(除Q点外),有ABO小于45,b的取值范围为b0或b2故选D【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k0,且k,b为常数)的图象是一条直线它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b)直线上任意一点的坐标都满足函数关系式y=kx+b5若一次函数的图象与轴交于点,与轴交于点则(O为坐标原点)的面积为( )ABCD【答案】C【解析】【分析】根据直线解析式求出OA、OB的长度,根据面
6、积公式计算即可.【详解】当中y=0时,解得x=,当x=0时,解得y=2,A(,0),B(0,2),OA=,OB=2,,故选:C.【点睛】此题考查一次函数图象与坐标轴的交点坐标,正确理解交点坐标的计算方法是解题的关键.6如图,在矩形中,动点沿折线从点开始运动到点设运动的路程为,的面积为,那么与之间的函数关系的图象大致是()ABCD【答案】D【解析】【分析】由题意当时,当时,由此即可判断【详解】由题意当时,当时,故选D【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题7甲、乙两人一起步行到火车站,途中发现忘带火车票了,于是甲立刻原速返回,乙继续以原速步行前往火车
7、站,甲取完火车票后乘出租车赶往火车站,途中与乙相遇,带上乙一同前往,结果比预计早到3分钟,他们与公司的路程(米)与时间(分)的函数关系如图所示,则下列结论错误的是( )A他们步行的速度为每分钟80米;B出租车的速度为每分320米;C公司与火车站的距离为1600米;D出租车与乙相遇时距车站400米.【答案】D【解析】【分析】根据图中一条函数的折返点的纵坐标是480,我们可得知,甲走了480米后才发现了没带票的,然后根据返回公司用时12分钟,速度不变,可以得出他的速度是80米/分钟,甲乙再次相遇时是16分钟,则可以得出相遇时,距离公司的距离是1280米,再根据比预计早到3分钟,即可求出各项数据,然
8、后判别即可【详解】解:根据题意,由图可知,甲走了480米后才发现了没带票,返回公司用时12分钟,行进过程中速度不变,即:甲步行的速度为每分钟米,乙步行的速度也为每分钟80米,故A正确;又甲乙再次相遇时是16分钟,16分乙共走了米,由图可知,出租车的用时为16-12=4分钟,出租车的速度为每分米,故B正确;又相遇后,坐出租车去火车站比预计早到3分钟,设公司与火车站的距离为x米,依题意得:,解之得:,公司与火车站的距离为1600米,出租车与乙相遇时距车站1600-1280=320米.故C正确,D不正确故选:D【点睛】本题通过考查一次函数的应用来考查从图象上获取信息的能力要注意题中分段函数的意义8已
9、知直线经过点,则关于的不等式的解集是( )ABCD【答案】B【解析】【分析】求出m的值,可得该一次函数y随x增大而减小,再根据与x轴的交点坐标可得不等式解集【详解】解:把代入得:,解得:,一次函数中y随x增大而减小,一次函数与x轴的交点为,不等式的解集是:,故选:B【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键9随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示如果小明某次打车行驶里程为22千米,则他的打车费用为( )A33元B36元C40元D42元【答案】C【解析】分析:待
10、定系数法求出当x12时y关于x的函数解析式,再求出x=22时y的值即可详解:当行驶里程x12时,设y=kx+b,将(8,12)、(11,18)代入,得: ,解得: ,y=2x4,当x=22时,y=2224=40,当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴)下列说法正确的是( )从开始观察时起,50天后该植物停止长高;直线AC的函
11、数表达式为;第40天,该植物的高度为14厘米;该植物最高为15厘米ABCD【答案】A【解析】【分析】根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;设直线AC的解析式为y=kx+b(k0),然后利用待定系数法求出直线AC线段的解析式,把x=40代入的结论进行计算即可得解;把x=50代入的结论进行计算即可得解【详解】解:CDx轴,从第50天开始植物的高度不变,故的说法正确;设直线AC的解析式为y=kx+b(k0),经过点A(0,6),B(30,12),解得:,直线AC的解析式为(0x50),故的结论正确;当x=40时,即第40天,该植物的高度为14厘米;故的说法正确;当x=50
12、时,即第50天,该植物的高度为16厘米;故的说法错误综上所述,正确的是故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键11下列命题是假命题的是( )A三角形的外心到三角形的三个顶点的距离相等B如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C将一次函数y3x-1的图象向上平移3个单位,所得直线不经过第四象限D若关于x的一元一次不等式组无解,则m的取值范围是【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别
13、判断后即可确定正确的选项【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组无解,则m的取值范围是,正确,是真命题;故答案为:B【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组12一次函数 y = mx +的图像过点(0,2),且 y 随 x 的增大而增大,则
14、 m 的值为( )A-1B3C1D- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可【详解】一次函数y=mx+|m-1|中y随x的增大而增大,m0一次函数y=mx+|m-1|的图象过点(0,2),当x=0时,|m-1|=2,解得m1=3,m2=-10(舍去)故选B【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键13如图,已知正比例函数y1ax与一次函数y2x+b的图象交于点P下面有四个结论:a0; b0; 当x0时,y10;当x2时,y1y2其中正确的是(
15、)ABCD【答案】D【解析】【分析】根据正比例函数和一次函数的性质判断即可【详解】因为正比例函数y1=ax经过二、四象限,所以a0,错误;由图象可得:当x0时,y10,错误;当xy2,正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.14若A(x1,y1)、B(x2,y2)是一次函数y=ax+x-2图像上的不同的两点,记,则当m0时,a的取值范围是( )Aa0Ba0Ca-1Da-1【答案】C【解析】【分析】【详解】A(x1,y1)、B(x2,y2)是一次函数图象上的不同的两点,该函数图象是y随x的增大而减小,a+10,解得a-1,故
16、选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.15在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是( )ABCD【答案】B【解析】【分析】过C作CDAB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在RtBCD中,利用勾股定理得到n的方程,解方程求出n即可【详解】过C作CDAB于D,如图,对于直线,当x=0,得y=3;当y=0,x=4,A(4,0)
17、,B(0,3),即OA=4,OB=3,AB=5,又坐标平面沿直线AC折叠,使点B刚好落在x轴上,AC平分OAB,CD=CO=n,则BC=3-n,DA=OA=4,DB=5-4=1,在RtBCD中,DC2+BD2=BC2,n2+12=(3-n)2,解得n=,点C的坐标为(0,)故选B.【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b,(k0,且k,b为常数),关于x轴对称,横坐标不变,纵坐标是原来的相反数;关于y轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数也考查了折叠的性质和勾股定理16在平面直角坐标系中,直线与y轴交于点A,如图所示,依次正方形
18、,正方形,正方形,且正方形的一条边在直线m上,一个顶点x轴上,则正方形的面积是( )ABCD【答案】B【解析】【分析】由一次函数,得出点A的坐标为(0,1),求出正方形M1的边长,即可求出正方形M1的面积,同理求出正方形M2的面积,即可推出正方形的面积.【详解】一次函数,令x=0,则y=1,点A的坐标为(0,1),OA=1,正方形M1的边长为,正方形M1的面积=,正方形M1的对角线为,正方形M2的边长为,正方形M2的面积=,同理可得正方形M3的面积=,则正方形的面积是,故选B.【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思
19、想解答17如图,平面直角坐标系中,的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与有交点时,b的取值范围是( )ABCD【答案】B【解析】【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线yx+b中求得b的值,再根据一次函数的增减性即可得到b的取值范围【详解】解:直线y=x+b经过点B时,将B(3,1)代入直线yx+b中,可得+b=1,解得b=-;直线y=x+b经过点A时:将A(1,1)代入直线yx+b中,可得+b=1,解得b=;直线y=x+b经过点C时:将C(2,2)代入直线yx+b中,可得1+b=2,解得b=1故b的取值范围是-b1故选B【点睛】考查了一
20、次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降18若实数a、b、c满足a+b+c=0,且abc,则函数y=ax+c的图象可能是( )ABCD【答案】A【解析】【分析】a+b+c=0,且abc,a0,c0,(b的正负情况不能确定也无需确定)a0,则函数y=ax+c图象经过第二四象限,c0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19下列命题中哪一个是假命题()A8的立方根是2B在函数y3x的图象中,y随x增大而增大C菱形的对角线相等且平分D在同圆中,相等的圆心角所对的弧相等【答案】
21、C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项【详解】A、8的立方根是2,正确,是真命题;B、在函数的图象中,y随x增大而增大,正确,是真命题;C、菱形的对角线垂直且平分,故错误,是假命题;D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键20如图,直线y=-x+m与直线y=nx+5n(n0)的交点的横坐标为-2,则关于x的不等式-x+mnx+5n0的整数解为()A-5,-4,-3B-4,-3C-4,-3,-2D-3,-2【答案】B【解析】【分析】根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n中,令y=0,得x=-5两函数的交点横坐标为-2,关于x的不等式-x+mnx+5n0的解集为-5x-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.