七年级数学上册一元一次方程应用题专题讲解超全超详细.doc

上传人(卖家):刘殿科 文档编号:5966730 上传时间:2023-05-19 格式:DOC 页数:7 大小:121KB
下载 相关 举报
七年级数学上册一元一次方程应用题专题讲解超全超详细.doc_第1页
第1页 / 共7页
七年级数学上册一元一次方程应用题专题讲解超全超详细.doc_第2页
第2页 / 共7页
七年级数学上册一元一次方程应用题专题讲解超全超详细.doc_第3页
第3页 / 共7页
七年级数学上册一元一次方程应用题专题讲解超全超详细.doc_第4页
第4页 / 共7页
七年级数学上册一元一次方程应用题专题讲解超全超详细.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、七年级上册应用题专题讲解一、列方程解应用题解题思路:审设列解答二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等。(一)和、差、倍、分问题读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增

2、加几倍,增加到几倍,增加百分之几,增长率”来体现。2.多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。增长量原有量增长率 现在量原有量增长量例1某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元例2旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤(二)等积变形问题等积变形是以形状改变而体积不变为前提。常用等量关系:原料体积=成品体积。常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变圆柱体的体积公式 V=底面积高Sh长方体的体积

3、 V长宽高abc例3现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根(三)数字问题1.要搞清楚数的表示方法:一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9),则这个三位数表示为:100a+10b+c2.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n1表示。例4有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数

4、。例5一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数 是十位上的数的3倍,求这个三位数.分析由已知条件给出了百位和个位上的数的关系,若设十位上的数为x,则百位上的数为x+7,个位上的数是3x,等量关系为三个数位上的数字和为17。(四)商品利润问题(市场经济问题或利润赢亏问题)(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。(2)利润问题常用等量关系:商品利润商品售价商品进价商品标价折扣率商品进价 (3)商品销售额商品销售价商品销售量 商品的销售利润(销售价成本价) 销售量(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折

5、出售,即按原标价的80%出售即商品售价=商品标价折扣率例6:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获 利15元,这种服装每件的进价是多少分析探究题目中隐含的条件是关键,可直接设出成本为x元,进价折扣率标价优惠价利润x元8折(1+40%)X元80%(1+40%)X15元等量关系:(利润=折扣后价格进价)折扣后价格进价=15例7:某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折 (五)行程问题画图分析法1.行程问题中的三个基本量及其关系:路程速度时间 时间路程速度 速度路程时间2.(1)相遇

6、问题: 快行距慢行距原距 (2)追及问题: 快行距慢行距原距 (3)航行问题: 顺水(风)速度静水(风)速度水流(风)速度 逆水(风)速度静水(风)速度水流(风)速度 水流速度=(顺水速度-逆水速度)2 (4)环路问题 甲乙同时同地背向而行:甲路程乙路程=环路一周的距离 甲乙同时同地同向而行:快者的路程慢者的路程=环路一周的距离抓住两码头间距离不变,水流速和船速不变的特点考虑相等关系即顺水逆水问题常用等量关系:顺水路程=逆水路程常见的还有:相背而行;行船问题;环形跑道问题。例8:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车

7、先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇(2)两车同时开出,相背而行多少小时后两车相距600公里 (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里 (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车 (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车 (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。) 例9:一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。(六)工程问题1工程问题中的三个量及其关系为: 工作总

8、量工作效率工作时间 2经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和总工作量1工程问题常用等量关系:先做的+后做的=完成量例10:将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作例11:一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池 例12:一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做

9、3天后,甲因事离去,乙参与工作,问还需几天完成(七)储蓄问题1顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.2储蓄问题中的量及其关系为:利息本金利率期数 本息和本金+利息 利息税=利息税率(20%)例13:某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和元,求银行半年期的年利率是多少(不计利息税) (八)配套问题:这类问题的关键是找对配套的两类物体的数量关系。例14:某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(

10、一个螺栓配两个螺母)例15:机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套(九)劳力调配问题这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。例16某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间 例17学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求

11、房间的个数和学生的人数。(十)比例分配问题比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。例18:甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件(十一)年龄问题例19:兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍例20:三位同学甲乙丙,甲比乙大1岁,乙比丙大2岁,三人的年龄之和是41,求乙同学的年龄。(十二)比赛积分问题例21:某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,

12、选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了 道题。例22:某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛(十三) 方案选择问题例23:某家电商场计划用9万元从生产厂家购进50台电视机已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售

13、一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案(十四) 古典数学问题例24:100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚多少小和尚例25:有若干只鸡和兔子,他们共有88个头,244只脚,鸡和兔各有多少只(十五) 增长率问题例26:民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的购买行李票。一名旅客带了35千克行李乘机,机票连同行李费共付了1323元,求该旅客的机票票价。(十六) 浓度问题 常用等量关系式: .例27:有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水 千克。某化工厂现有浓度为15%的稀硫酸175千克,要把它配成浓度为25%的硫酸,需要加入浓度为50的硫酸多少千克例28:有甲、乙两种铜和银的合金,甲种合金含银25%,乙种合金含银%,现在要熔制含银30%的合金100千克,两种合金应各取多少

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(七年级数学上册一元一次方程应用题专题讲解超全超详细.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|