(完整版)向量基础知识汇总.doc

上传人(卖家):2023DOC 文档编号:6008440 上传时间:2023-05-21 格式:DOC 页数:4 大小:101KB
下载 相关 举报
(完整版)向量基础知识汇总.doc_第1页
第1页 / 共4页
(完整版)向量基础知识汇总.doc_第2页
第2页 / 共4页
(完整版)向量基础知识汇总.doc_第3页
第3页 / 共4页
(完整版)向量基础知识汇总.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、向量基础知识梳理1向量:既有_,又有_的量叫向量2向量的几何表示:以A为起点,B为终点的向量记作_3向量的有关概念:(1)零向量:长度为_的向量叫做零向量,记作_(2)单位向量:长度为_的向量叫做单位向量(3)相等向量:_且_的向量叫做相等向量(4)平行向量(共线向量):方向_的_向量叫做平行向量,也叫共线向量记法:向量a平行于b,记作_规定:零向量与_平行1向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作a,b,则向量_叫做a与b的和(或和向量),记作_,即ab_上述求两个向量和的作图法则,叫做向量求和的三角形法则对于零向量与任一向量a的和有a0_(2)平行

2、四边形法则如图所示,已知两个不共线向量a,b,作a,b,则O、A、B三点不共线,以_,_为邻边作_,则对角线上的向量_ab,这个法则叫做两个向量求和的平行四边形法则2向量加法的运算律(1)交换律:ab_(2)结合律:(ab)c_3向量的减法(1)定义:aba(b),即减去一个向量相当于加上这个向量的_(2)作法:在平面内任取一点O,作a,b,则向量ab_如图所示(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为_,被减向量的终点为_的向量例如:_1向量数乘运算实数与向量a的积是一个_,这种运算叫做向量的_,记作_,其长度与方向规定如下:(1)|a|_(2)a (a

3、0)的方向;特别地,当0或a0时,0a_或0_2向量数乘的运算律(1)(a)_(2)()a_(3)(ab)_特别地,有()a_;(ab)_3共线向量定理向量a (a0)与b共线,当且仅当有唯一一个实数,使_4向量的线性运算向量的_、_、_运算统称为向量的线性运算,对于任意向量a、b,以及任意实数、1、2,恒有(1a2b)_1平面向量基本定理(1)定理:如果e1,e2是同一平面内的两个_向量,那么对于这一平面内的_向量a,_实数1,2,使a_(2)基底:把_的向量e1,e2叫做表示这一平面内_向量的一组基底2. 两向量的夹角与垂直(1)夹角:已知两个_a和b,作a,b,则_ (0180),叫做向

4、量a与b的夹角范围:向量a与b的夹角的范围是_当0时,a与b_.当180时,a与b_.(2)垂直:如果a与b的夹角是_,则称a与b垂直,记作_3平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个_的向量,叫作把向量正交分解(2)向量的坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_i,j作为基底,对于平面内的一个向量a,有且只有一对实数x,y使得a_,则_叫作向量a的坐标,_叫作向量的坐标表示(3)向量坐标的求法:在平面直角坐标系中,若A(x,y),则_,若A(x1,y1),B(x2,y2),则_1平面向量的坐标运算(1)若a(x1,y1),b(x2,y2),则ab_

5、,即两个向量和的坐标等于这两个向量相应坐标的和(2)若a(x1,y1),b(x2,y2),则ab_,即两个向量差的坐标等于这两个向量相应坐标的差(3)若a(x,y),R,则a_,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标2两向量共线的坐标表示设a(x1,y1),b(x2,y2)(1)当ab时,有_(2)当ab且x2y20时,有_即两向量的相应坐标成比例3若,则P与P1、P2三点共线当_时,P位于线段P1P2的内部,特别地1时,P为线段P1P2的中点;当_时,P位于线段P1P2的延长线上;当_时,P位于线段P1P2的反向延长线上1平面向量数量积(1)定义:已知两个非零向量a与b,我

6、们把数量_叫做a与b的数量积(或内积),记作ab,即ab|a|b|cos ,其中是a与b的夹角(2)规定:零向量与任一向量的数量积为_(3)投影:设两个非零向量a、b的夹角为,则向量a在b方向的投影是_,向量b在a方向上的投影是_2数量积的几何意义ab的几何意义是数量积ab等于a的长度|a|与b在a的方向上的投影_的乘积3向量数量积的运算律(1)ab_(交换律);(2)(a)b_(结合律);(3)(ab)c_(分配律)1平面向量数量积的坐标表示若a(x1,y1),b(x2,y2),则ab_即两个向量的数量积等于_2两个向量垂直的坐标表示设两个非零向量a(x1,y1),b(x2,y2),则ab_3平面向量的模(1)向量模公式:设a(x1,y1),则|a|_(2)两点间距离公式:若A(x1,y1),B(x2,y2),则|_4向量的夹角公式设两非零向量a(x1,y1),b(x2,y2),a与b的夹角为,则cos _向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:ab(b0)_(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,b,ab_(3)求夹角问题,往往利用向量的夹角公式cos _(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|_

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文((完整版)向量基础知识汇总.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|