1、人教版初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个
2、内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距
3、离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于
4、30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理 直角三角形两直角
5、边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48定理 四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论 任意多边的外角和等于36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的
6、四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角
7、都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推
8、论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2 S=Lh 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质 如果ab=cd,那么(ab)b=(cd)d85 (3)等比性质 如果ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
9、线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定
10、理3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103
11、圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三点确定一个圆。110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦
12、,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
13、120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121直线L和O相交dr直线L和O相切d=r直线L和O相离dr122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理 弦切角等于它所夹的弧对的圆周角129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等1
14、30相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135两圆外离dR+r 两圆外切d=R+r两圆相交R-rdR+r(Rr)两圆内切d=R-r(Rr) 两圆内含dR-r(Rr)136定理 相交两圆的连心线垂直平分两圆的公共弦137定理 把圆分成n(n3):依次连结各分点所得的多边形是这
15、个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180n140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn2 p表示正n边形的周长142正三角形面积3a4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180n=360化为(n-2)(k-2)=4144弧长计算公式:L=n兀R180145扇形面积公式:S扇形=n兀R2360=LR2146内公切
16、线长= d-(R-r) 外公切线长= d-(R+r)147完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2实用工具:常用数学公式乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|a|+|b| |a-b|a|+|b| |a|b-bab|a-b|a|-|b| -|a|a|a|一元二次方程的解-b+(b2-4ac)/2a -b-(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别
17、式b2-4ac=0 注:方程有两个相等的实根b2-4ac0 注:方程有两个不等的实根b2-4ac0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c*h正棱锥侧面积S=1/2c*h 正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r 0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=SL
18、注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h以上内容来源于三好社区,获取更多知识点及习题解析欢迎登陆三好社区。近期三好网推出1块钱上“北京名师提分直通车”活动,同时699元的智能教学硬件“好学宝”终身免费使用,从而引发疯抢,全国仅限500名,一元钱就可以体验一对一教学,机不可失,赶快报名吧!点击“阅读原文”即刻报名!别想一下造出大海,必须先由小河川开始。成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人若软弱就是自己最大的敌人,人若勇敢就是自己最好的朋友。成功就是每天进步一点点!如果要挖井,就要挖到水出为止。即使爬到最高的山上,一次也只能脚踏实
19、地地迈一步。今天拼搏努力,他日谁与争锋。在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起。行动不一定带来快乐,但无行动决无快乐。只有一条路不能选择-那就是放弃之路;只有一条路不能拒绝-那就是成长之路。坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的。只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:我问心无愧。用今天的泪播种,收获明天的微笑。人生重要的不是所站的位置,而是所朝的方向。弱者只有千难万难,而勇者则能披荆斩棘;愚者只有声声哀叹,智者却有千路万路。坚持不懈,直到成功!最淡的墨水也胜过最强的记忆。凑合
20、凑合,自己负责。有志者自有千计万计,无志者只感千难万难。我中考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者。相信自己能突破重围。努力造就实力,态度决定高度。把自己当傻瓜,不懂就问,你会学的更多。人的活动如果没有理想的鼓舞,就会变得空虚而渺小。安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久。眉毛上的汗水和眉毛下的泪水,你必须选择一样!若不给自己设限,则人生中就没有限制你发挥的藩篱。相信自己我能行!任何业绩的质变都来自于量变的积累。明天的希望,让我们忘了今天的痛苦。世界上最重要的事情,不在于我们身在何处,而在于我们朝着什么
21、方向走。爱拼才会赢努力拼搏,青春无悔!脚踏实地地学习。失去金钱的人损失甚少,失去健康的人损失极多,失去勇气的人损失一切。在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。旁观者的姓名永远爬不到比赛的计分板上。觉得自己做的到和不做的到,其实只在一念之间。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的源泉。没有等出来的辉煌;只有走出来的美丽。我成功,因为我志在成功!记住!只有一个时间是最重要的,那就是现在。回避现实的人,未来将更不理想。昆仑纵有千丈雪,我亦誓把昆仑截。如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。没有热忱,世间将不会进步。彩虹总在风
22、雨后,阳光总在乌云后,成功总在失败后。如果我们都去做我们能力做得到的事,我们真会叫自己大吃一惊。外在压力增强时,就要增强内在的动力。如果有山的话,就有条越过它的路。临中考,有何惧,看我今朝奋力拼搏志!让雄心与智慧在六月闪光!成功绝不喜欢会见懒汉,而是唤醒懒汉。成功的人是跟别人学习经验,失败的人是跟自己学习经验。抱最大的希望,为最大的努力,做最坏的打算。欲望以提升热忱,毅力以磨平高山。向理想出发!别忘了那个约定!自信努力坚持坚强!拼搏今朝,收获六月!成功就是屡遭挫折而热情不减!我相信我和我的学习能力!生活之灯因热情而点燃,生命之舟因拼搏而前行。好好使用我们的大脑,相信奇迹就会来临!我们没有退缩的
23、选择,只有前进的使命。明天是世上增值最快的一块土地,因它充满了希望。好好扮演自己的角色,做自己该做的事。在世界的历史中,每一位伟大而高贵的时刻都是某种热情的胜利。困难,激发前进的力量;挫折,磨练奋斗的勇气;失败,指明成功的方向。拥有梦想只是一种智力,实现梦想才是一种能力。什么都可以丢,但不能丢脸;什么都可以再来,唯独生命不能再来;什么都可以抛去,唯有信仰不能抛去;什么都可以接受,唯独屈辱不能接受。今朝勤学苦,明朝跃龙门。成功是别人失败时还在坚持。踏平坎坷成大道,推倒障碍成浮桥,熬过黑暗是黎明。每天早上醒来后,你荷包里的最大资产是24个小时。-你生命宇宙中尚未制造的材料。我奋斗了,我无悔了。此时不搏何时搏?全力以赴,铸我辉煌!